DESI GN DECI SIONS FOR THE TAPR TNC LINK LEVEL

David Henderson, KD4NL
2621 W 164th St.
Torrance, CA 90504

Abst ract the high level Pascal code sit in a tight
loop checking flags that are continually

The decisions that were made up front being set and reset by interrupt code

on the software side of the TAPR project witten in assenmbly |anguage. This design
have had a very strong inmpact on the decision paved the way for inplenmentation
i npl enmentation and success of that project. and checkout of the Pascal source without
Following is a review of sone the design havi ng to have the hardware actually
decisions that were nmade |ong before coding running, and greatly sinplified the design
started, and a chronicle their inpact upon of the Pascal code since It did not have to
i mpl ementation and perfornance. deal with interrupts. There was also a
conplicating factor in that flags are

I ntroduction continually being set and reset to schedul e
future actions in the Pascal code; that is,

Before the sof tware description the main loop of code was a sequence of |F
starts, lets run through a quick overview and CASE statements that check these
of the hardware. The mcroprocessor is a important flags. The action taken by the
Mtorola 6809; the menmory conplenent is 24 code is not immediately apparent upon

kilobytes of EPROV 6 kilobytes of RAM and reading the code; you have to know the
32 bytes of electrically erasable ROM The meani ng of the flags being manipul ated,.
peri pheral chips consist of a Mstek 6551

asynchronous interface adapter, and a The next design hurdle was the
Western Digital 1933 HDLC interface chip. buffering; how many buffers should there be
There is also an Mstek 6522 for clock and what mechanisms were to be used to nove
support and onboard parallel /0. The data from one buffer to another? The nmain
potential of wusing a parallel port for task, being a TNC, needed only two buffers,
term inal 1/O is provided with a Mtorola one for the incom’n? data flow and one for
6820 parallel port chip. The conputer the outgoing data low, and it was thought
system wused as a software factory for the at one time that only two buffers would be
onboard sof tware was an HP- 64000 needed. Once digi peating and control
m croconputer development System present at functions were considered, it was clear
the University of Arizona. This system that four buffers were needed - there had
made possible the installation of the TNC to be a way to shuttle HDLC input data to
software on the TNC hardware. the HDLC output queuwe and a way of talking
termnal input data for commands, acting
The entire software devel opment cycle upon the commands, then printing a response
was focused on X. 25. The AT&T BX. 25 to the terminal. The software was then
docunent was taken as a reference for LAPB broken up into four distinct sections; each
(reference 1), and the AMSAT docunent section moves data from one buffer to
(reference 2) was taken as a reference for another, wth the possible side effects
the header construction. The transition such as paraneter changes. One section
tables in the BX 25 docunent were followed moved data from the HDLC input ring to the
very closely for the connect/disconnect termnal output ring, another moves data
sequences, but the I-frame manipul ation was from the terminal input ring to the HDLC
implenented in other ways, as described in output ring, a third took data from the
nore detail later on. term nal input ring and produced status
nmessages in the terminal output ring, and
Architecture the digipeating process nove HDLC frames
- fromthe HOLC input ring to the HDLC out put
The nunber one design choice was to ring.
wite as nuch of the TAPR code in Pascal as
possi bl e. Pascal was chosen because it is The next choice was to have the
a widely available high |evel |anguage, and software *know' as little as possible about
the existence of sophisticated conpile tine the half duplex nature of the radio link.
options for debugging inplied the Pascal Previ ous implementations such as Vancouver
checkout could be started either on a big Area Digital Conmunications Goup protocol
timesharing or a mcroconputer (VADCG for short) had used the poll/final
Pascal system bit in messages to turn the link around and
have the receiving side turn into the
The choice which influenced the rest transmtting si de. | did not fully
of the inplenentation the most was to have conprehend the use of the poll/final bit in

2.21

and this use of the poll/final
conflicted with the LAPB

this manner,
bit certainly

usage. The design decision chosen for this
"when do | send" problem can be sinply
stated: Only acknow edge recei pt of
messages or send nmessages when the mdem
signal data carrier detect is not present,
or the data carrier detect signal has
dropped at least once since receipt of a

means that nessage
be generated once for
information franes, and
break in the received
new nessages are queued

message. Thi s rule
acknowl edgenents will
every sequence of
that there is a
traffic before any
up for transm ssion.

Consequences of the architecture

i npl enentation on the
system was not a full

The major difference
the HP Pascal

The Pascal
HP- 64000 devel opnent
1so standard Pascal .
dealt with character strings;
had a STRING data type whereas the 13S0
standard has only arrays of characters.
Unfortunately when the HP system witers

adopted the STRING data type, they threw
out completely any conpatibility wth 150
st andard progranms - character strings

longer than one byte could not be used.
This problem was ‘*solved' by including all

character strings into one area of nenory
in EPROM all references to constant
strings had to reference the name of the

array containing the data in this read only
data area.

The Pascal code was checked out on two
different conputer systenms prior to being
installed on the TAPR board. The systens

were a 36 bit mainframe and an 8 bit mcro.
The 36 bit mainfrane checkout used routines
to loop back HDLC input and output together
in software; this allowed the software to

connect to itself and allowed the basic
logic to be checked out; all of this
checkout was greatly speeded up via the

synbolic debugger on the mainframe, The 8
bit mcro allowed on the air tests with
VADCG boards, and was invaluable in shaking

down nore basic logic problems. Again the
routines to interface to terminal and HDLC
I/O had to be changed to reflect the
routines existing in the 8 bit mcro
system but this is a prett easy task to
acconpl i sh, The result o this staged
checkout was a very robust inplenentation
of x.25. There were bugs in the Pascal

code, but they were only evident under

extreme conditions.

I mpl erentation of the architecture

There are four streans of data flow
Two directions for HDLC 1/0 and two
directions for ternminal 1/0O Knowi ng when
there is data present in the input streans
and when there is -enough roomin the
buffers for nore characters in the output
streams is handled Dby global variables.
These variables are generally set by
interrupt routines and reset when |ow |evel
routines called by Pascal manipulate data
associated by the " flags. Each data stream

2.22

peculiarities, and the fla
activity associated wit

has its own
checking/ cl earing

each peculiarity will be covered.
The first stream of data is the HDLC
input stream Here a global variable

exi sts which always contains the Hoc input
top frame size, and is zero if there are no
HDLC input frames placed into the HDLC
input buffer and not yet processed by the
Pascal program The portion of the Pascal
code that handles HDLC input notices that
the variable is nonzero, and calls a |ow

level routine which will nove the HpLc data
from the input ring buffer into a private
Pascal buffer for further exam nation.

For HDLC output, there is a global
variable which contains the nunber of free
bytes in the HDLC output ring buffer, This
cell is checked before any HDLC output
frame is generated, and if there is not
enough roomin the HDLC output ring buffer
for the potential output frame, then the
generation ofthe output frame is deferred
by sinply not clearing the flags that cause
the output frane to be generated. In the

case of digipeated frames, if there is not
enough room in the HDLC output ring buffer
for the digipeated frame, then the
digipeated frame is sinply forgotten.
Terminal output is simlar to HDLC
output, but there are differences. There
is a global wvariable which contains the
nunber of bytes currently available in the
output ring buffer. The routine called to

data will always wait for

queue up terninal ¢
output ring 'buffer

space available in the
to queue the character, The purpose in
having the variable output ring free byte
count is to avoid waiting for buffer space
when X-frames come in on the HDLC input
port. Wen an I-frane cones in that has a
data portion too big to buffer, the data in
the frame are ignored and the upLC nessage

"RNR' is scheduled for future transm ssion.
This async output routine is freel
callable from anywhere within the Pasca

code, and does get called as a part of
paraneter displays, hex dunps., and internal
debug routines, 1t was decided that when
any of these activities were going on, no
one would care if the pascal code was
spinning while waiting for more roomin the
async output buffer.

NOW Wwe come to the nmpost interesting of

the buffering problems, terminal input.
The nature of x.25 s that there can be up
tO seven conplete I-frames in flight at

once. From the tight RAM linitations, it
was clear that t%e input data for these
|-frames could not be duplicated anyplace
else in menmory. The solution chosen this

time around was to build a table describing

the active portion of the termnal input
ring buffer. The table is eight entries
long, and each entry consists of a data
start pointer into the terminal input ring
buffer, and a data length frem that start
0i nt. The table is “eight entries |ong

ecause that is the nodulus for the X 25

sequence nunbers , and these X. 25 sequence
numbers serve as indexes into the table.
Part of the routine activity is to check to
see if a new |-frame can be generated, and
if sothen a check is made for data to fill
the I-frame. This checking is perforned by
calling a routine which returns a renoval
pointer and a size for data (if any)
present within the terminal input ring. If
there are data present, then the size will
be nonzero, and another table entry can be
constructed to describe an P-frame in
flight. Wen |-frames get acknow edged the
data space occupied in the termnal input
ring buffer is marked no longer in use by
advancing to the next sequence nunber and
by changing a pointer , allowing reuse of
the nemory. One consequence of this design
choice on input buffering is a "selective
rej ect" (asking for fills) , becomes a nore
difficult job to inplenment than if the
other feasible approach of using linked
lists had been made (It should be noted
that selective reject is not part of x.25).

The next area that was sinplified by
the design decisions is the generation of
HOLC frames for information transfer.
There is a definite priority in x.25for
the kinds of frames that have to be sent,
The priority schenme is inplemented by the
order in which flags are checked. These
flags are generally set in the HDLC input
routine, but may be set by anyone to
schedule HDLC output. The flags that are
checked and the order in which they are
checked are: The send RNR flag (set when
termnal buffer space gets low) to send a
RNR frane, the send REJ flag (set when an
out of order frame is received) to send a
REJ frane, the received RNR flag must be
reset (set when an RNR frame is received)
to send an I|-frane, the send RR flag (set
when |-frane received) to send an RR frane.
This section of code is also where the
hal f-duplex decision must be made. The
code to generate these output frames is
only executed if the nodem signal DCD (data
carrier detect) is low or if the DCD signal
dropped after any of the flags scheduling
RNR, REJ or RR frames were set. This
sinple test is all it takes to prevent the
sending of an RR frame for every I|-frane
recei ved. Notice also that with the order
in which the flags are checked, sending an
|-frame will be attenpted before sending?1 an
RR frame, so that if both sides ave
|-frames to send, then there are no RR
messages sent when an I-frame would also
acknow edge receipt to the other side.

Another detail that was nade quite
easy by the "no interrupts in Pascal"
deci sion was the handling of nultiple
software tinmers. Actually, there are only
two timers, the beacon timer and X 25 tinmer
{1, but they are handled exactly the sane
way . The generalized timer code is
implemented via a Pascal structure; this
structure contains an expiration tine and a
Boolean flag that indicates whether or not
the timer is running. "Time" is used
| oosely, for the only way the Pascal code

2.23

is aware of the passage of time is by
| ooki ng at yet another global variable.
The time global variable is incremented at
a one per second rate by an assenbly
language interrupt routine. Whenever a
timer needs to be started, its expiration
time is set to the tine global variable
plus the nunber of seconds in the tiner
interval, and a Boolean flag is set within
the timer structure to indicate the clock
is active, The big loop of code that is
continually checking flags now has to check
the tinmers for expiration, and this is
qui te easily done by conparing the global
variable tine with the expiration time in
the tinmer ,

Debuggi ng and checkout

A subset of | SO standard Pascal was
selected which would work both with the
H P-64000 conpiler and the two systens that
| had available for witing and checkout,
The real reason for this subset decision
was to allow as nuch checkout of the
sof tware as possible in a friendly

environnent. ~ The "no interrupt code in
Pascal" decision made possible the
repl acenent of low | evel routines in

assenbly language with routines witten in
pascal Wwhich could invoke standard Pascal
1/0. On the mainframe, a dummy set: of HDLC
input and output routines was witten to
| oop back the HDLC output internaily (from
the Pascal programs point of view to the
HDLC input. On the 8 bit nmicro system
existing routines for MDLC input and output
were nodified to wuse new calling sequences
and the Pascal code was actually executed
on the air. In both debugging testbeds,
the clock was simulated by increnenting the
global wvariable holding the second tick
whenever the code in the main |oop noticed
the system tinme of day change from a
previous val ue. These sets of routines
al l oned checkout of the major logic flow of
the Pascal software under a synbolic
debugger, This self-test arrangenent was
extrenely valuable, and allowed about
ninety percent of the bugs in the Pascal
code to be elininated under the friendly
environment of the synbolic debugger. Not
everything could be checked, and the things
that could not be checked were not: setting
flags for the low level routines (which
didn't exist) or nissing transitions in the
statesevent t abl e that were never exercised
during this self-test. One clear fallout
0f the debuggi ng procedure was
transportability, because the software was
running on two different Pascal systens
before the TAPR TnC software even nmet the
T2PR TNC har dwar e.

Suvmmary

The broad design decisions that were
made before inplenentation of the Tapr TNC
sof tware served as an aid in
inplenentation, supplying a framework that
wculd support the detailed coding ,orocess.
These decisions were made in the light of
previous experience (and mistakes)in the

i mpl enentation of three other systens
simlar to X 25. There were other choices
that could have been nmade to supply the
inplementation framework, but my intent was
to illustrate the decisions which made the
TAPR TNC software alnost wite itself.

Ref er ences

2.24

1. BX.25 Technical Reference@ Issue 2,
June 1980. Aneri can Tel ephone and
Tel egraph Conpany.

2. Protocol Specification for Level 2(link
level) Version 1.1, Paul R naldo, W4RI, et
al, October 10, 1982.

