
AN INTRODUCTION TO THE HUB OPERATING SYSTEM

Mike O'Dell, KB4RGM
13110 Memory Lane
Fairfax, VA 22033

Introduction

The AMRAD Packet Switch marks a significant
departure in the evolution of Amateur packet
radio. Historical1
service (TNC% an CK

the computers used for packet
'digipeaters) have been small,

memory-poor, and worked at their limits to do the
job. But they were inexpensive, and "cheapness"
was an absolute requirement if packet radio were
to ever be successful. The demands of creating a
transit backbone for connecting local area
networks far exceed the capabilities of the first-
generation 8-bit machines, so while cheapness is
still very important, the AMRAD switch is being
designed around an IBM PClone. Further., as the
cost of higher bandwidth machines continues to
fall, easily rehosting the switch as hardware
advances is an important consideration. With the
:;;i;;;e base for packet communications moving

AMRAD started lookin
vehicle'on which to base the so f

for a similar
tware necessary

for a serious, high-
The Hub system is t e current choice for theK

erformance packet switch.

underlying o
sim le,

erating system. It is very fast,

capag
an cr is written in C. It h-as the

ilities needed to do the job, and will easily
outlive any hardware hosting it.

Not too long ago, software was relatively
foreign to many amateurs. While this has changed
dramatically, operating systems beyond the scale
of a few utility routines burned into a ROM, are
probably not widely understood. The

it
urpose of

this document is to discuss the arc itecture,
motivation, and implementation of the Hub system
chosen for the Switch. To accomplish this without
addressing only those amateurs already versed in
operating systems design (wizards), a brief
tutorial overview of "traditional" process-based
operating systems design theory is provided. It
cannot be complete, but a bibliography is provided
for those interested in entering this wonderful,
subtle world. After this introduction to
operating systems, we will discuss the Hub in more
detail. While there may be sections whose detail
is necessary but inscrutable to operating systems
newcomers such readers are encouraged to skim for
the highii hts and press on, reading for the
general phi Hosophy.
technology,

But before jumping into the
we provide a short historical

recitation, and roll the credits. a

History and Credits- -

The basic architecture of the Hub was created
circa 1975 by Gary Grossman at the Center for
Advanced Computation (CAC) at the University of
Illinois in Champagne-Urbana. The people at CAC
were involved with ARPAnet since "before the
beginning," and were quite experienced with
communications programming,
implementation, and "message-based'

protocol
designs. (The

CAC group put the first minicomputer on the
ARPAnet.) While message-based designs were
elegant and simple on the blackboard, they were
quite inefficient in practice. On the other hand,
the industrial "real-time" community built systems
which could

f
0 very fast

unmaintainab e because o
monolithic design. Grossman was looking for a wa

Yto combine the efficiency of the industria-
&;kre; with the elegance of. message-basec

The Hub was his solution. The general
Hub architecture has been used over the years in
several large, successful communications projects
by several companies, all of which have their
roots in the Center and Grossman's luminary
visions. The system described here is loosely
based on the system described in a thesis by

[Masamoto] (Grossman's Masters student), mixed
thoroughly with good ideas borrowed from other
sources, and tempered with hard-won experience
gained in other network projects.

An Overview of Traditional Process-based Systems

This section is intended to be a very brk;ef
excerpt from basic operating s stems
experienced reader can proba i:

theory.
ly proceed to the

next section, while the newcomer is commended to
the Bibliography, particularly [Comer], [Hansen],
[Organick], [Jansen], and the-like.

There are many facets of an operating system,
but for the purposes at hand (communications
programming),
provided are:

the most important functions

l- Concurrency
This is how the operating system creates
the illusion the computer is doing
several things at the same time. It is
not; the processor is switching between
several different jobs fast enough that
for most purposes, the concurrency is
real. Concurrency is also known as
"multiprogramming and sometimes as
"multi-tasking", al'though some people
erroneously think these are different.

2- Resource Management

If several activities are proceeding
concurrently, it is inevitable that
left to themselves, two activities wili
fight over some resource, be it memory,
an I/O device, or access to a third
activity. The resource management
function coordinates the use of
resources which are either scarce, or
which must be shared in an orderly
fashion to accomplish the required
functions.

The texts cited above will spend a great deal
of time discussing these issues, as there are a
great many details to get straight. We intend to
gloss over most of these details and go for the
general philosophy.

Before explaining the traditional model of
concurrency, it is valuable to brief1 ddi.;;fs why
it is needed. At the top level oY 9 any
system only does one thing: that which it does!
But accomplishing that "one" jobs often involves
many other small jobs largely unrelated to one
another, or related only at the "edges." Instead
of creating one giant program which does
everything, it is easier to organize a s stem as a
collection of smaller programs whitt: operate
independently but cooperatively to accomplish the
job. The execution environment of these programs
must provide some mechanism for independent
execution, as well as mechanisms for cooperation.
This "execution environment" is called an
Operating S stem.

P
They come in many shapes,

sizes, and f avors, but all exhibit a basic set of
characteristics. The most fundamental of these
characteristics is concurrency; i.e., the notion
of "independent execution."

In "traditional" procefz-b;;eed !Fsigns, t!'e
unit of concurrency process .
Essentially, a process is the independent
executing state of some program, or piece of
program, which is conceptually executing in
parallel with other processes. In recess-based

Kdesigns, processes interact with ot er processes,

5.92

with responsibilities
accomplished somehow

for the job being
divided between the

processes. Generally speaking, a process executes
internally, performing some computation, until it
must interact with another process before it can

lz
roceed.
efore

Maybe it needs a piece of information
it can

result needed %
0 on, or maybe it has produced a

doesn't matter.
y the other process; the reason
What is important is that the

process, for whatever reason, cannot continue its
computation until the interaction completes. A

P
recess in this condition is said to be "blocked"
from proceeding further), and suspends its

execution by calling a primitive system function
"block()" [this is the fun;;i;;;;rall syntax for
some arbitrary language].
somehow simply "waits". P

the process

slight-of-hand,
In rea ity, by some

(its registers
the state of the executing process
, program counter, stack pointer,

condition codes, and whatever else dictated by the
hardware) is preserved in suspended animation
until such time as the necessary interaction is
complete. When said interaction completes, a
"resume()" function thaws the frozen process which
can then continue with its computation.

Nowhere have we explained how such
interactions are orchestrated, or who calls
"resumeo" to bring the slee ing process back to
life. This isn't particularP y important at this
juncture (see the texts for the myriad ways such
matters can be conducted).
the model -

What is important is
processes compute and communicate,

compute and communicate,
Moreover, to

in an endless cycle.
the frozen processA

block()/resume() sequence appears like a
the

instruction (unless a
no-op"

recess has access to some
external timing Pin ormation, which makes
block()/resume() appear like a very slow no-op!).
This style of concurrency promotes programs with
multiple processes which either compute or wait on
one another to communicate, with the sequencing of
those events controlled almost entirely within the
individual processes.

One important implication of this structure
has to do with the state-saving slight-of-hand
described above, and its im lementation on single
processors. Since a real Psingle) CPU can only
execute one instruction stream at a time, the CPU
must be multiplexed between the processes which

block()$
are lo ically executing concurrently.

resume0 pair
The

form the basis of this
multi lexing. If only one of the processes is
runna IYle ("not waiting") at any given time, the
choice of which process to run is easy. When
several are runnable (the overwhelming case),
policies establish how the CPU cycles are to be
divided. This is called the "scheduling policy,"
and it too is discussed at great length in the
cited texts. For our purposes, the important
issue is whether the
decision is made

"which process to execute"
only when the running process

blocko's (therebv voluntarilv giving UP the CPU).
or whether by some magic (usually related to some
kind of real-time clock) "the scheduler giveth and
taketh away" the processor arbitrarily. This
consideration is important because this policy
controls the apparent relative rates of execution
of the processes. For communications pur
this controls the "granularity" o IT

oses,
the

concurrency. [For instance, if programs are
allowed to run to completion before the CPU is
switched to another process, then the system would
essential1
of trans Y

not multiprogram.]
errin

The actual process
control of the CPU between

processes is cal fed a "context switch." Context
switches are surprisingly expensive operations,
usually 5 to 20 times more expensive than a full-
blown subroutine call (a subroutine call is not
merely a "jump to subroutine" instruction, but
incl,udes passing arguments, etc.).

BY now the reader should have a general idea
of the4 basic mechanisms inside a multiprogrammed
0
K
erating system. The reason for explaining all

t is is that the Hub is different.

An Architectural Overview of the Hub- - -

This section will describe the basic
structure and mechanisms of the Hub usingT;;aAzE;
with modern microprocessor architecture.
section will describe the implications of these
mechanisms and contrast them with the traditional
process model.

The classic fetch-execute cycle found at the
heart of almost all processors (micro
otherwise) is also the basic mechanism of the HuOb:
The Hub system (Figure 1) takes its name from the
Hub Queue which stores unexecuted instructions.
The Hub queue is essentially the "instruction
prefetch queue" for the "execution unit" of the
Hub system.
however,

An important feature of the Hub
is the source of instructions stored in

the Hub queue. In most familiar processors the
instructions to be executed ("the program") are
stored in a memory, and they are sequenced into
the instruction prefetch queue using the value of
"the program counter." Conventionally, the
program counter simply increments, causing the
instruction at the "next"
the prefetch queue.

memory location to enter
The only exception to this

linear sequencing is when a "branch instruction
loads the program counter with some arbitrary new
value.

InlIthe casyI of the Hub queue, there is no
static rogram of instructions waitin to be
sequencecr from memory into the Hub queue %
"program counter." Rather,

y some
instructions are

created and sequenced into the Hub queue by the
execution of other instructions! This means that
most (but not necessarily all) instructions
generate at least one new instruction when they
execute. From this viewpoint, the "program" is
created as it executes! Like branches in
microprocessors,
loading the queue:

there is one special case of
initializing the system. Some

agent must initialize the Hub queue with
instructions before the Hub fetch-execute cycle
can be engaged, lest there be nothing to do!

With this basic understanding, Figure 1
should be more comprehensible, but there are some
additional twists. Modern processors often have
partitioned execution units - floating-point add-
on chips which interpret special arithmetic
instructions are a good example. When an
instruction comes to the front of the prefetch
queue, the instruction decoder inspects the
candidate instruction and dispatches it to the
appropriate functional execution unit for
interpretation. A similar operation takes place
when the Hub dispatches an instruction. In the
Hub, an execution unit which can process
instructions is called a TASK. (My apologies to
readers who already have a favorite interpretation
for this and several other words to follow - there
are only so many such words which are short and
euphonious.) In the Hub system, the Task is the
fundamental mechanism for organizing an activity
and providing concurrency. A Task is represented
by a data area called a TASK STATE VECTOR (TSV)
and represents the "register set" of an execution
unit. Further, a Task must have some
specification of the work it is performing, so a
Task is said to be obeying a particular TASK
PROGRAM (TP).
"microcode"

The Task Program is essential1
for the execution unit. Formal P

the

Task is a binding of a TSV to a TP.
y, a

Such bindings
are not arbitrary as a TP expects a particular
data layout in the work area of an associated TSV,
but many TSV's can be bound to one TP (even if the
TP code isn't truly reentrant). This is like
having more than one floating-point register set
in a floating-point unit. Both a many-to-one and
one-to-one TSV-TP binding is indicated in Fi ure
1. Two questions are raised by Figure 1: t f a
TSV is a data area, why do arrows labeled
"procedure calls" point to TSV's, and how is the
binding between a TSV and its associated TP
re resented?

f
To address this question, it is

va uable to look at Hub instructions in a bit more
detail.

Figure 2 is a simplified Hub instruction. At
the outset it appears quite familiar - an opcode
and a few operands of some fashion. But note the
added fields: the source and destination TSVid's.
A TSVid is a handle, represented as a small
integer, which can be used as a shorthand to
indicate a particular TSV, and therefore, a
particular Task. (The TSVid is returned to the
proud parent when a new Task (TSV) is created.)

When the fetch-execute dispatcher examines
the instruction at the front of the Hub queue, it
uses the Destination TSVid in the instruction to
determine which execution unit (TSV) should
process the instruction. The opcode field then
specifies which operation is to be peri;;;edbz
that particular execution unit.

5.93

processor analogy viewpoint, we have simply split
the opcode into two ieces for easy decoding: one
part specifies whit R CPU chip should be used for
the instruction (floatin
integer), %

-point, decimal, normal
and the opco e is then private to the

particular chip. In the Hub system, however, the
Opcode field is at least partially specified
across all Tasks: a specific, small set of
instructions is implemented (or at least treated
rationally) by ALL Tasks. Tasks can also have
private instructions in addition to this basic
core set, but usually the core set provides all
that are needed.

We now return to the question of binding-the
~~~u;ll;th  a particular TP and how instructions

get dispatched. Like the common
set, t e first chunk of all TSV's has aK

0 ;;&I;
P'

format. This area with a common format is called
the "TSV Prefix". One of the key items in the TSV
prefix is the TASK PROGRAM ENTRYPOINT (TPE)
dispatch table. The TPE dispatch table is indexed
by the Opcode value and contains a

E
ointer to the

function within the TP code body w ich performs
the interpretation of the corres onding Opcode.
These function pointers form the ginding between
the TSV and the TP. This indirection through the
TPE dispatch table in the TSV Prefix is why the
"procedure call"
TSV's.

arrows in Figure 1
E
o through the

To tie all the
R
ieces toget er, the main

fetch-execute loop of
essentially:

t e Hub Operating System is

Forever {

Fetch the next instruction from
the Hub Queue

Use the Instruction's Destination
TSVid to locate the TSV which
is to execute the instruction

Use the Instruction's Opcode to
retrieve the appropriate Task
l??;~~sasm  Entrypoint function

I

Call the TP function at the
specified address to actually
execute the instruction

Architectural Implications

The Dispatcher loo
%

described above is really
all there is to the Hu . There is no notion of
"blockin ",
to camp f

Task Program Entrypoint functions run
etion and then return to the Dispatcher

loop. In the process model, the state of an
activity's computation is implicitly contained in
the variables (registers, storage, stack segment,
etc.)of the process encapsulating the activit
and this thinly-diffused state information must z

,
e

maintained inviolate by the context switch
mechanism. In the Hub, the TSV represents all the
storage needed by an activity. Any state
information which must be retained across TPE
invocations must be recorded in the TSV.

There is only one stack segment in the Hub;
the Dispatcher invokes the TPE functions with
subroutine calls, so no context switch is needed.
(This also means no tricky assembler code is
required, since context switch functions are
almost always written in assembler.) Further, in
process systems, processes often "idle" internal1
when they have nothing to do. In the Hub, a TS%
with nothing to do doesn't get dispatched. If the
Hub queue runs out of something to do, the
Dispatcher idles waiting for an instruction.
Where do these instructions come from?
Interrupts.

In most systems, interrupts are viewed as
nast
quit K

creatures which are to be sterilized as
ly as possible. In process-based designs,

the usual litany is to make the interrupt simply
awaken a sleeping recess which then does whatever
is necessary to pP acate the device. In systems
with high interrupt rates, this means high
context-switching rates, and poor performance.

In the Hub environment, interrupt code
usually does some simple work to clean up after
the device, and start a new operation if there is
an outstanding queue. Notification of the client

5.94

often arises where there is no other I/O pending,
but the system is idling, waiting for some time to
pass before some Task starts dumping a retransmit
queue, etc. The clock interrupt provides the
timebase which drives the Timer Management
functions, which in turn provide timer services to
TSVs.

Hub Support Services

In addition to providing concurrency, an
operating system also provides support services
for activities. Memory management is an important
service, as are time management, buffer, and queue
management. These services provide useful
primitives which need not be reengineered by each
Task, and are orchestrated in such a manner as to
promote cooperation between Tasks.

Memory and Buffer Management- -

In this Hub implementation, memory
management and buffer management have been lumped
together.
(even in

They can easily be split back apart
this im lementation)

allocator for bu fersP
but using the same

and what would normally be
"general memory requests" is very attractive. The
overwhelming experience with communications
ro

1 f
ramming is that internal fragmentation induced

Y ixed size memory allocation is much easier to
tolerate than the external fragmentation which
results from variable size memory allocation.
Further, fixed-size allocators are always faster,
usually by a large margin, since they don't have
to look around to find a piece of memory big
enou h to satisfy the request, nor try to coalesce

achun s when they are freed. Two~~~o~bL~rn;~;f;e
with fixed-size allocators:
object/large-object problem, and as a result of
addressing(l), we find (2) a maximum allocation
limitation.

Network traffic comes in two sizes -
small packets containing terminal traffic, and
large packets containing file transfer data. If
storage is allocated in chunks big enough for the
large packets, much storage will be wasted. If we
chose to allocate small chunks, we must insure the
overhead of keeping track of them doesn't consume
too much storage or processor bandwidth. The
compromise is to allocate storage in medium-sized
units.

The storage allocation units are sized
to accommodate some large percentage of all
requests (ranked by size and fre uency).

B
When

large packets are required, the uffer header
contains pointers which can be used to chain
buffers together to form multi-buffer "messages",
in addition to the usual pointers for chaining
buffers into a queue of distinct messages.

A direct implication of a small/large
compromise allocation size, is a rather severe
upper bound on the size of an object which can be
created using storage acquired from the allocator.
In a

%
eneral-purpose

%
rogramming environment, this

woul be unaccepta le. For communications

R
rogramming, however? this doesn't usually pose a
ardship, although It occasionally complicates
some algorithms a bit more than they might be in
other circumstances. If future applications of
this Hub implementation find themselves in
hardship situations as was stated above, the
memor

B
and buffer allocator can be split apart to

provi e the necessary level of service.

Clock and Timer Management- - -
In this implementation of the Hub

architecture, we assume a single, fixed-period
real-time interrupt which is vectored (somehow!)
to the Clock Interrupt Handler. One interrupt is
called a "tick", and represents the smallest real-
time increment which can be directly measured or _
created in a given implementation. The Clock and
Timer support routines provide Task Programs with

activity that the operation has completed is
accom

r
lished by simply queuing an instruction.

There ore, if interrupts are enabled and devices
are running, it is allowable for the Hub ueue to
empty. The system is simply waiting on I9 0. One
other source of interrupts is the real-time clock.
This is implemented by wiring a periodic source to
an interrupt in ut
interrupt heart E

so as to produce a periodic
eat

100 Hz).
at a known rate (usually 600

In communications systems, the situation



functions for scheduling timer notification events
after a specified interval, canceling scheduled
events, measuring real -time intervals, and
maintaining the current time-of-year.

The Timer functions maintain a ueue of
upcoming timer events with the queue eI ements
recording the difference between the time of their
event and the previous event, measured in ticks.
This way, the clock interrupt code need only
decrement the time remaining in the first element
of the timer event queue until it is zero. When
the difference has been reduced to zero, the
appropriate TIMER instruction destined for the
recipient is

7
laced in the Hub ueue,

timer queue e ement recycled. R
and the

T is process of
"decrement once per tick until a zero difference
is detected" repeats as long as there are timer
queue entries.

functions.
This does place a burden on the queuing
The timer queue element must be sorted

into the queue in the correct location, while
adjusting the requested absolute time to the
appropriate difference while scanning the current
queue. When a scheduled event is deleted from the
queue,
adjusted.

only the following element must be
The al orithms are not complex, but do

require carefu H attention
conditions.

to the boundary

Queue Management

In this implementation, queues are
~~~~ly-linked  and are headed with a dummy queue

This affords easy insertion, deletion, and
saniiy-checking. The usual assortment of insert,
delete, and discard functions are provided.
are optimized for queues of buffers.

They

Unexplored Issues

This paper, while providing an overview of
the Hub (and some back round
systems newcomer), has H

for the operating

unaddressed.
eft some important issues

While the "CPU" model of instruction
execution spawning new instructions which are
added to the Hub Queue is fairly straightforward
to grasp, it offers only modest direct insight as
to how one structures concurrent systems using the
Hub primitives. The actual subroutine calls
necessary to do the work in a Hub S

l?
stem, and how

one goes about
also important

rehosting a Hub imp ementation are
issues which weren't addressed

either. But this pa er only claimed to be an
Introduction to the Hui Operating System, so some
these issues remain ideal topics for other
documents,
reading

and others are best addressed by
the code. We intend to report our

experiences in all these areas.

Bibliography

Comer, D.,

Jansen, P.A.,

Hansen, B.,

Masamoto, K.,

Organick, E.I.,

Organick, E.I.,

"Operatin
Approach,

6 System Desi ,n: the XINU
Prentice-Ha 1,f 1984

"Operating Systems Structures and
Mechanisms," Academic Press, 1985

"Operating Systems Principles,"
Prentice-Hall, 1973

"Implementation of HUB System "
Universit of

19y6
Illinois Master's

Thesis,

"Computer S stems Organization:
The B5700/B~7OO,"Academic Press,
1973

';',:e, Multics System,", MIT Press,

5.95

Figure 1
The HUB System

1

Up Code Oest TSVid Stc TSVid At-g1 Arg2 Arg3
I L h \

Ar]n
.

(Buffers, pointers, etc.)

Figure 2
A Hub Instruction

5mQ6

