AN | NTRODUCTI ON TO THE HUB OPERATI NG SYSTEM

M ke O Del |, KB4RGM
13110 Menory Lane
Fairfax, VA 22033
I ntroduction ”}/ﬁsamﬁlo] ((Btrﬁssnag‘ :sdlvastgrs st ugefnt), mi>r<]ed
. L orou Wi ood ideas borrowed from ot her
The AMRAD Packet Switch marks a significant so,urces(‘,], Ind tengered w th hard-won experience
deé),artur_e in the evolution of Amateur packet gained in other network projects.
radio. Hstorically the conputers used for packet
service (TNC's and 'digipeaters) have been small, An_Overview of Traditional Process-based Systens
menory-poor, and worked at their limts to do the
job. ~ But the){ were inexpensive, and "cheapness This section is intended to be a very brief
was an absol ute requirenent if packet radio were excerpt from basic operating systens theory. Tﬁe
to ever be successful. The denmands of creating a experienced r gly.proceed to the

transit backbone for connecting |ocal area
networks far exceed the capabilities of the first-
generation 8-bit machines, so while cheapness is

Sti]l very inportant, the AVRAD switch is being
desi gned around an |BM PClone. Further., as the
cost~ of hi gher bandwi dt h machi nes cont| nues to
fall, easiTy rehosting the switch as hardware

consideration, Wth th
hardware base for gack t _communi cations novjn
forward. AMRAD started looking for a simla
vehicle' on which to base the software necessary
for a serious, h.igh-%erformance packet switch:
The Hub systemis the current choice for the
underlying” operating system It Is very fast,
snm%tex “and 1Is witten in C t. has the
capabilities needed to do the,gob, and will easily
outlive any hardware hosting if.

Not too long ago, software was relatively
foreign to many amafeurs. Wile this has changed
dramatical ly, ~Operating systems beyond the scale
of a fewufility routines burned into a are
?r ably not widely understood. The Eiurpose of

h docunent is to discuss the architecture,
ation, and inplenentation of the Hub sﬁtem
n for the Switch. To acconplish this without
essing only those amateurs already versed in
g systens design (w zards), a brief
oveiview of "traditional" process-based
systens design theory is provided. |t
but “a bi bliography is provided
for those interested in entering thi's wonderful,
subtle world. After this Tintroduction to
operating systems, we wll discuss the Hub in nore
detail. “While there may be sections whose detail
I's necessary but inscrutable to operating systens
newconr.s, such readers are encouraged to skim for
the highlights and press on, readi ng .
eneral ~“phi oso;\)ﬂtg. ut. before unP| ng into the
echnol ogy, rovide a short Hhistorical
recitation,” and rol

the credits. .
History and Credits

The basic architecture of the Hub was created
rca 1975 by Gry Gosspan at the Center for
vanced ,Congnut ati‘on (CAC) at the University of
Iinojs in Chanpagne-Urbana. The people at” CAC

were Involved w th ARPAnet since "before the

beginning,” and were quite experienced wth
communi cations progranm ng, protocol

I mpl enentation, and "nessage-based” designs. iThe

CAC group put the first mniconputer on the

ARPAnet.) Il e nessage-based desi ?ns wer e

el egant and sinple on the bl ackboa}r]d, hey were

quite inefficient in practice. On the other” hand,
the industrial "real-time" comunity built systens

ich could §O very fast.,, but were nearly
unmal ntai nab Ie because of their intricate,
monol i thjc desH%]n. Gossman was | ooking for a wa{
to conbine the efficiency of the industria

designs Wlthh the elegancé of message-b G

scgeme%. The Hub was his sol ution. The general

Hub architecture has heen used qver the years in

several large, successful comyunications “projects

by several "conpanies, all of which have their
roots in the Center and Grossman's |um nary
visions. The system described here is |oosely
based on the system described in a thesis by

advances s an inportan €

0
I

nmot i
cho
add i
operatin
tutorial

operating
cannot be conpl ete

b
s
v
se
r

asea

5.92

ead?r c%n pr oba
sect while the newcomer” is comended to
the Bibliography, particularly LOomar], [Hansen],
[Organick], [Jansen], and the-1ike.

There are nany facets of an operating system
but for the purﬂoses at hand (comuni cations
programming), the nost inportant functions
provi ded are:

1 - Concurren

next section,

This is %vy the operating system creates
the illusjion the conputer is dai ng
several things at the same time. It i

not; the processor 1S swtching between
several different jobs fast enough that
for nost purposes, the concurrency is
real Concurrency IS al so known as

"l 't pr-ogr-anm ngs", and sonetines as
"mul ti-tasking", “although sone people
erroneously think these are different.

2 - Resource Management
If several activities are proceeding

concurrently, 1t is inevitable that.
left to thenselves, two activities wli

fight over sone resource, bhe it nemory,
an | /O device, or access to a third
activity., The resource managenent
function V\%OOI‘dI nates the use of
resour ces ich are either scarce, or
which nust be shared in an orderly

fashion to acconplish the required
functions.
‘The texts cited above will spend a great deal
of time discussing these issues, as there are a
great nany details to get straight. W intend to
gl oss over nost of these details and go for the
general phil osophy.
i onal nmodel of
efly discuss why
~detail, any
which it does!
s often involves

Bef ore expl aining t adi t
concurrency, it is valuabl bri
it is needed. At the t |
system onl Iy does one thi
But acconplishing that "one
man%/ other smal[” jobs Iartgel nrelated to one
another, aor related only af t "edges." Instead
of creating one giant program which does
ev?rythl ng, It is easier to organize a systemas a
col I'ection of snaller prograns which operate
i ndependently but cooperatively to acconplish the

job. © The execution environment of these prograns
nmust provi de sone nechani sm for i ndependent
execution, as well as nechanisnms for cooperation.
This "execution environnment” is called an
Operating System They cone in many shapes,
sizes, and f{avors, but all exhibit a bdsic set of
characteristics. The npost fundamental of these
characteristics is concurrency; i.e., the notion
of "independent execution.”

~ In"traditional" process-based designs, the
unit of concurrencyv is the "process-"
Essentially, a process is the mdependen]‘r
executing State of sone pro%r?m or piece o
program -~ which I's conceptually executln% in
paral lel with other processes, |h pecess-based
designs, processes interact with ot her processes,

onsibilities far the %ob bei ng
ed sonmehow divided between the
processes. General |y speaking, a process executes
internally, perform’ng some conputatjon, until it
nust interact with another process before it can
Eroceed, Maybe it needs a piece of information
efore It can g0 on, or maybe it has produced a
result needed by the other process; the reason
doesn't matter. © \WWat is inportant is that the
process, for whatever reason, cannot continue its
conputation until the interaction conpletes. A
rocess in this condition is said to be "bl ocked"
Ffrom_proceedl ng further), and suspends its
execution by calli n(t; a primtive systemfunction
"block()" [fhis is the function-call syntax for
sone arbitrary Iap%?l%%]".. In theory, the process

with res
acconplis

somehow si nply In reality, Sone
slight-of-hand, * the state of the executing process
(its registers, program counter, stack pointer,

condition codes, and whatever else dictated by the
hardware) is preserved in suspended ani mation
until such time as_ the necessary interaction is
complete. Wien said interaction conpletes, a
"resume()" function thaws the frozen process which
can then continue with its conputation.

) Nowhere have we explained how such
jNteractions are orches}ra ed, or who cil l's
'resume()" to bring the s|eeping process back to
life. This isn't partlcularq i ortgnt at thlﬁ
juncture (see the texts for the nyriad ways suc
matters can be conducted). Wiat is inporfant is
the nodel - processes conpute and communicat e,
conpute and conmunicate, in an endless cycle
Mor'eover, to the frozen grocessﬁ t he
block()/_resumeﬁ) sequence appear s 1'i*ke & "no- op”
instruction (unless a process has access to sone
exterpal timng information, ich nmak

! S
block()/resume() appear like a very slow no-op_!?.
Thi's style of concurrency pronotes programs W th
mul tipl € processes which either conmpute or wait on
one another to communicate, with the sequencing of
those events controlled alnost entirely within“the
i ndividual processes.

One important inplication of this structure
has to do with the state-saving slight-of-hand
described above, and its jmplenentation on single
processors. . Since a real (si nql eg CPU can 0'&%
execute one instruction stream & time, the |
nust be rmultiplexed between the processes which
are logically executing concurrently. The
block()/resume0 pair formthe basis of this
mul ti t1)a| exing. If only one of the processes |s
runnable ("hot waiting") at any given tine, e
choi ce of which process to run i's easy. When
several are runnable (the overwhel m ng case%,
policies establish howthe CPU cycles are to be
divided. This is called the "schedulln? policy,"
and it too iIs discussed at great length in the
cited texts. For our purposes, the inportant
i ssue IS whether the "which process to execute”
decision is made only when the runni ngn process
block()'s (thereby vol untarilv eivine ~the CPU).
or ether by some magic (usually related to sone
kind of real-tine clock) "the scheduler giveth and
taketh away" the processor arbitrarily. Thi s
consideration is inportant because thi's policy

controls the apparent relative rates of execution
of the processes. For conmunications pur poses,
this controls the granularity OE the

concurrency. [For instance, if prograns are
allowed to run to conpletion before the CPU Is
swi tched to another process, then the system woul d

essential 1y not nultiprogram] The actual process
of trans _errin% control of the CPU between
processes is cal Ted a "context swtch.” Context

sw tches_are surprisingly expensjive operations,
usually 5 to 20 tines npre expensjve than a full-
bl own subroutine call (a subroutine call is not

merely a "junp to subroutine” instruction, but
includes passing arguments, etc.).

By now the reader should have a general idea
of the basic nmechanisns inside a nultiprogranmmed

ggerat_ing system The reason for explaining all

is isthat the Hub is different.

Overview of the Hub

This section wll describe
structure and nechani sns of the Hub
wi th nodern mcroprocessor architecturse. The next
section will describe the inplications of these
mechani sns and contrast them with the traditional
process nodel .

An Architectural

the basic
using analogy

5.93

The classic fetch-execute cycle found at the

heart of _alnmpst all processors (mcro or
otherwise) is alsg the basic nmechanism of the Hyb.
The Hub system (Figure 1) takes its pame from tllf1e

Hub eue which sfores unexecuted instructions.
The Hub queue is essentially the "instruction
E{lefetch queue” for the "exeCution unit" of the

b system An inportant, feature of the Hub,
however, is the source of instructions stored in
the Hub queue. In most familiar processors, the
instructions to be executed ("the progranm) are
stored in a menory, and they are sequenced into
the instruction prefetch quede using the value of
the program counter.” = Conventionally, the
program counter sinply increments, causing the
instruction at the "next" nenory location to enter
the prefetch queue. me only exce'ﬂtion to this
| I 'near sequencing is en a “branch instruction
| oads the program counter with some arbitrary new
val ue.

In the case of the Hub queue, there is no
static "progrant! of instructions waiting to be
sequenced from nmenpry_into the Hub queue %y sone

program counter. ither, instructions a[]e
created and sequenced into the Hub queue by the

execution of other instructions! Thi s means .that

nost (‘but not necessarily all) 1nstructions
generate at |east one new instruction when they
execute. From this viewpoint, the "progrant |35
created as it executes! Li ke branches in
m croprocessors, there is one special case of
| oading the queue: _initializing the system Sone
agent " nust initialize he queue wth
instructions before the Hub fetch-execute cycle

can be engaged, lest there be nothing to do!

Wth this basic understanding, Figure 1
shoul d be nore conprehensible, but there are sone
additional twists. Mdern processors often have
partitioned execution units - floating-point add-
on chips. which interpret speci fll arithmetic
Instructions are a good exanple. Wen aﬁ
instruction conmes to the front of the prefetc
queue, the instruction decoder inspects the
candi date instruction and dispatches it to the
appropriate functional execution unit for
interpretation. ~A simlar operation takes place
when the Hub dispatches an instruction. In the
Hub, an execution unit which can process
instructions is called a TASK (M. apol O%I es.to
readers who already have a favorite’interpretation
for this and several other words to follow - there
are only so many such words which are short and
euphoni ous.) In the Hub system the Task is the
fundanent al * mechani sm for organi zing an activity
and providing concurrency. A Task_is rg{gresented
by a data area called a TASK STATE VECTOR (TSV)
and represents the "register set” of an execution
unit. . Further, a Task _ must have
specification of the work it is performng, so a
Task is said to be obeying a particular TASK
PROGRAM (TP). The Task Programis essentially the
"m crocode” for the execution unit. Fornal {y, a
Task is a binding of a TSV to a TP. Such bi ndi ngs
are not arbitrary as a TP expects a particul ar
data layout in thé work area of an associated TSV,
but many TSv's can be bound to one TP_(even if the
TP code isn't truly reentrant).. This is like
havi n? nore than one floati n?- point register set
inafloati rjl%\})m nt unit. Both a many-to-one and
one-to0-one V-TP binding is indicated in Fi gure
1. Two questions are ralised by Figure 1: %f
TSV is a data area, do arrows | abele
“procedure calls" point to"TSV's, and how is the
binding between a TSV and its associated TP
refresent ed? To address this question, It is
valuable to look at Hub instructions in a bit nore

detail.
Figure 2 is a sinplified Hub instruction. At
tset it a%pears quite famliar - an opcode
a few operands of some fashion, But note the
ields: the source and destination TSVid's.
/ d is a handle, represented as a small
integer, which can be used as a shorthand to
indicate a_part
particul ar Task.
pr

icular TSV, and therefore, a
t (The TSVid is returned to the
oud parent when a new Task (TSV) is created.)
‘Wien the fetch-execute dispatcher exanines
the instruction at the front of the Hub queue, it
uses the Destination TSVid in the instruction to
determ ne which execution unit (TsV) should
process the instruction. The opcode field then

specifies which operation is to be performed by
that particular execution unit. From the

sone

Processor anal ogy viewpoint, we have sinply split

he opcode into two Eieces for easy decoding: one
Part, specifies which CPU chip shguld be used fO(
the instruction (floating-point, decinmal, norna

d the opcode is then private to the
articular, chip. n the Hub system however, the

code fje least partially specified
across all Tasks a specific, small set of
nstructions is inplemented (or at least treated
ationally) by ALL Tasks. Tasks can al so have
ivate instructions in addition to this basic
re set, but usually the core set provides all
at are needed.

Ve now return to the question of binding-the
TSV with a pgrtlcul ar TP and how instructions
actually get dispatched. Like_the comon code
set, the first chunk of all TSV's has a fixed
formt. This area with a common format is called
the "Tsv Prefix". _One of the key itens in t S
prefix is the TASK PRC ENTRYPQ NT
dispatch_table. The TPE dispatch table is
by the (Opcode value and contains a pointer
function within the TP code body which f
the interpretation of the corréesponding Qpcode.

i nteger),

[
r
pr
co
th

These function pointers form the binding between
the TSV and the TP. .~ This indirection through the
TPE dispatch table in the TSV Prefix is V\h% t he
"procedure call" arrows in Figure 1 go through the
TSV's. To tie all the %I eces together, the main
fetch-execute |oop of the Hub Operating Systemis
essentially:

Forever {
Fetch the next instruction from
the Hub Queue
Use the Instruction's Destination
TSVid to locate the TSV which
is to execute the instruction

Use the Instruction's Qpcode to
retrieve the appropriate Task

Program Entrypoint function
address
Call the, TP function at the

specified address to actually
execute the instruction

}

Architectural |nplications

The Di spat cher Ioo% descri bed, above is reall
there is to the Hub. _There is no notion o
Task Pro%ram Entrypoi nt functions run

on and then return to the Dispatcher
loop.. In the process nodel, the state of an
activity's conputation is inplicitly contained in
the variables (registers, storage, stack segnent,
etc.) of the Process encapsul ating the actlvitz‘
e

I h

al |
"blockin%")
to comp eti

and this thinly-diffused state information nust
mai ntai ned 1nviolate l%y e context swt
m;:chamsm Ig tdhebHu , the tT.S.V.rtepreser}‘t‘ns alslt atltee
st orage nee an activity.

gnforr%atlon V\?n chynust be ret alyned across TPE
invocations must be recorded in the TSV.

There is only one stack in the Hub;

D =~ —

som

=
—
=
= -+
[=8=13

se%mant)
Di spatcher invokes the TPE functjons v(vilth
outine calls, SO no context switch Is needed.
his also neans no tri ckg\li asse?‘ol er . code is
equired, since context swtch functions are
nost always witten in assenbler,.g Further, in
ocess systens, processes often "idle" |rljternal 13
en " have nothing to do. In the Hub, a TS
ing to do doesn't get dispatched. If the
b queue “runs out sonething.to, do, .the
spatcher id : or an instruction.
instructions conme fronfP

9L

ere do hese
terrupts.

I'n nost

>3

interrupts are viewed as
nasty creatures which are to be steriljzed as
q icKly as possible. In process-based designs,
the “Usdal litany 1s to make the mte&rupt Si nrRJ,I)(
awaken a sl eeping process Which then does whateve
IS necessary to placate the device. In systens
w th high mterruPt rates, this neans high
context-switching rates, and poor performance.

In the Hub environnent, interrupt code
usual |y does sone sinple work to clean up after
the device, and start a new operation if there is
an outstanding queue. Notification of the client

syst ens,

5.94

activity that the operation has conpleted is

accompl’i shed by smpI%/ queui ng an instruction.
There fore, if interrupts are enabled and devices
are running, it is allowable for the Hub queue to
enpty. The systemis sinply waiting on | /0. One
ot her source of interrupts i's the real-time clock.
This is inplemented by Wring a periodic source to
an interrupt input S0 as to produce a periodic
interrupt heart beat at a known rate (usually 60~
100 Hz). . I'n conmunications systens, the situation
often arises where there is no other /0 pendi n?,
but the systemis idling, waiting for sone tine fo
pass before some Task starts dunping a retransmt
gueue, etc. The clock interrupt “provides the
timebase which drives the Tinmer Minagenent
functions, which in turn provide timer services to

SVs.
Hub Support Services
In addition to providing concurrency, an

operating system al so provideS support services
for activities. Memory management i'S an inportant

service, as are tjme fmanagenent, buffer, and queue

managenent. = These services provide useful

rimiives which need not be reengineered by each

ask, and are orchestrated in such a nmanner as to
pronote cooperation between Tasks.
Menory and Buffer Managenent

In this Hub inplenmentation, nenory

managenent and buffer managenent have been | unped

t oget her. They can easi|y be split back apart

(even in this in?lementatmn) but using the same
allocator for bufiers and what would normally _be
"general nenory requests” is very attractive. © The
overwhel m ng” experience w th conmunications
Ero%ramn ng I's that internal fragnentation induced
y fixed size nemory allocation 1s much easier to
tolerate than the “external fragnentation which
results from variable size nenory allocation.
Further, fixed-size allqcators are always faster,
usual l'y by a Iar%e margin, since they don't have
to ook around to find a piece of menory big
enouih to satisfy the request, nor try_ to coal escée
chunks when they are freed. Two problems arise
with fjxed-siZe allocatorsi: (1) the small-
obj ect/| arge-object problem and as a result of
?,dd,rtests,| ng(l), we find (2) a maximum al | ocation
imtation.

Network traffic cones in two sizes -
smal | packets containing termnal traffic, and
Iarlge packet s contgl ni n% file transfer data. |f
storage Is allocated in Chunks big enough for the
Iarge Pack ts, nuch storage wll be wasted. If we
choSe to allocate small chunks, we nust insure the
overhead of keeping track of them doesn't consune
too nuch storage ‘or processor bandw dth. _The
co,ntprom se Is to allocate storage In nedi umsized
units.

The storage allocation units are sized
to accommopdate sone |arge percentage_ of all
requests (ranked by size and frequency). en
Iar[ge, packets are rv\%qwred, the buffeér header
confains pointers ich can be used to chain
buffers together to form nulti-buffer "nessages",
in addition to the usual pointers for chaining
buffers into a queue of distinct messages.

. A direct inplication of a small/large
conprom se allocation size, is a rather severe
upper bound on the size of an aobject which can be
created using storage acquired fromthe allocator.

In a general -purpose %rogramn ng environnment, this
woul be unacceptable, ~For communications
rograming, however? this doesn't usually pose a
Ear ship, “al though. it occasjonal Ig CQIT]NI at es
sone algorithns a bit nore than théy maght be in
other circunstances, |f future applications of
this Hub inplenmentation find thenselves in
har dshi p gltuatlom as was stated above, the
nenor-y and buffer allocator can be split apart to
provi de the necessary level of service.

Oock and Timer Managenent

) In this inplenentation of the Hub
architecture, we assune a single, fixed-period
real-tine interrupt which is véctored Esomehow,!)
to the O ock Interréipt Handl er. e interrupt 1§
called a "tick", and represents the smallest real-
time increnent. which can be di rectl¥ measur ed
created in a given inplenentation. he C ock and
Timer support “routines provide Task Programs with

functions for scheduling timer notification events
after a specified interval, canceling schedul ed
events, nmeasuring real -time intervals, and
mai ntaining the current tine-of-year.

. The Timer functions naintain a queue of
upcomng tiner events with the queue e(ienent_s
recording the difference between the time of their
event and the previous event, measured in ticks.
This way, the clock interrupt code need onl

decrenent. the tine remaining in the first elenmen
of the timer event queue until it is zero. \hen
the difference has been reduced to zero, the
appropriate TIMER instruction destined for the
recipient is placed in the Hub _queue, and the
timer queue elenent recycled. This process of
"decrenent once per tick until a zero difference
is detected" repeats as long as there are timer
queue entries.

This does place a burden on the queui ng

functions. The tiner queue elenment nust be sorte
into the queue in the correct locatjon, while
adjusting the requested absolute time to the

appropriaie difference while scanning the current
queue. Wen a scheduled event is deleted fromthe
queue, ~ onl the following elenent nust be
adjusted. The algorithns are not conplex, but do
re%u{_re carefu% attention to the boundary
condi tions.

Queue Managenent

In this inplenentation, ueues are
doubly-linked and are headed with a dummy queue
cell. " This affords easy insertion, deletion, and
sanity-checking. The uSual assortment of insert,
deleté, and discard functions are provided. They
are optinized for queues of buffers.

Unexpl ored |ssues

This paper, while providing an overview, of
the Hub (and some background for the o?eratlng
systens newconer), has Teft sone inportant issues
unaddr essed. While the "CPU' nodel of instruction
execution spawning new instructions which are
added to the Hub Queue is fairly straightforward
to grasp, It offers only nodest “direct Tnsight as
to how one structures concurrent systens using the
Hub primtives. The actual subroutine calls
necessary to do the work in a Hub System and how
one goes about rehosting a Hub inplementation are
al so inportant issues which weren't addressed
either. = But this Eﬁ er only clained to be an
I ntroduction to the | E_Operatlng System so sone
these issues renmain ideal topics for other
docunent s, and others are best addressed by
readi ng the code. W intend to report our
experiences in all these areas.

Bi bl i ogr aphy

Comer, D., "Qperatin stem Desi gn: the XINU
Ap%)roach, k I§¥ent|ce-Ha ﬁn 1984

Jansen, P. A, "Cperating Systens Structures and
Mechani sns, " “Academi ¢ Press, 1985

Hansen, B., "Qperatin stems Principles,"
Pr%)ntl ce- I-gl IS,y 1973 P

Masanoto, K., "l ppl ementation of HUB System "
Uni versityof Illinois ster's
Thesi s 19%6

Organick, E ., "Conputetr Systefrs Crpanazation:
The 55700/Bg700,"Academic Press,
1973

Oganick, EI., '{'gr}ez Mil tics System", MT Press,

5.95

Instructions

§§:‘Rl‘f$$9>'ﬁ)Zl‘i‘}$%$%5$ﬁ:w&&%ﬁ%ﬁ?ﬁ}wﬂmﬁwm&‘
¥

B R AR TR R R

Figure 1
The HUB System

EpCode Dest TS¥id | Stc TSYid Arg Arg2 [Arg3

L ’ l I |
what to do I
For wWhom

By whom Arguments for the operation
(Buffers, pointers, etc.)

Figure 2
A Hub Instruction

5.96

