
The KASQ Internet (TCP/IP) Package: A Progress Report

Phil Karn, KA9Q

ABSTRACT

For over two years, the author has led the development of C-language software
implementing the ARPA Internet protocol suite (commonly called “TCP/IP”). Intended
for amateur radio use, the software was originally written on and for the IBM PC and
its clones running MS-DOS. However, the use of a de-facto industry standard proto-
col set has resulted in considerable interest in and contributions to the effort by non-
amateurs as well. The software has been “ported” to several different computers and
is enjoying increasing use in both conventional Local Area Network (LAN) environments
as well as amateur packet radio.

This paper describes the considerable progress this effort has made, and reflects
on the choice of TCP/IP now that significant on-air experience has been gained.

1. Introduction

At the Fourth ARRL Amateur Radio Computer Networking Conference in March 1985, I proposed
that the ARPA Internet Protocols be used in amateur packet radio. [2] [3] Since then, TCP/IP has
become a reality on amateur radio. Many stations now run TCP/IP almost exclusively, and it is increas-
ing steadily in popularity.

2. What “TCP/IP” is - and isn’t: A Review

Unfortunately, the subject of higher level networking protocols in amateur radio (including, but not
limited to, the famous virtual circuit vs datagram debate) is still highly controversial in certain circles.
Because many misconceptions about TCP/IP persist, I will review what it is and is not.

TCP and IP are only two elements (albeit very important ones) of a larger, modular set of proto-
cols known as the ARPA Internet Protocol Suite. It must be stressed that only “higher level” protocols
are specified. In IS0 jargon, the ARPA Protocol Suite begins with the upper half of the network layer
(level 3B, also called the internet sublayer) and goes all the way up to level 7, the application; levels 1,
2 and 3A are deliberately left unspecified. This is in keeping with ARPA’s original purpose: constructing
a uniform internetwork out of an existing collection of dissimilar links and even entire networks that
would otherwise be incompatible with each other. There is no “ARPA Standard Link Level Protocol”
because there is no need to require only one; they can all coexist yet still interoperate.

AX.25 Level 2, X.25 and the network layers of NET/ROM, Texnet, and even COSI fit into the
Internet model very nicely. TCP/IP does not compete with these developments (except for the level 4
or transport level components in some of them), but rather complements them all. By filling a very real
need, the ARPA suite is today the de-facto industry standard for computer networking when a wide
variety of computers and underlying networking technologies must be interconnected.

3. What “Higher Level Networking” Really Means

In the IS0 model, everything above layer 3 is “end-to-end”. That is, layers 4 through 7 exist only
in the end users’ machines (hosts in ARPA terminology, end systems in ISO) not in the intermediate
packet switches (gateways). Unfortunately, some have used terminology at variance with this definition,
causing considerable confusion as to the meaning of “higher level networking”. For example, the addi-
tion of hop-by-hop acknowledgements to a network is not “level 3 networking”, it is a level 2 function.
Further, by strict interpretation of the IS0 model, we already have a de-facto datagram-oriented

“network layer” in the address field that is part of “AX.25 Level 2”. We already have a de-facto
“transport” protocol running in the TNCs that maintains connections on an end-to-end basis. Installing
“real” level 3 and 4 protocols means pushing AX.25 back down to the link layer it was designed for.

These d istinctions are not just semantic quibbling
pieces shou Id fit togethe r in the network and ho w it shou

They affects one’s
appear to thle users.

entire view of how the

4. Computer Networking vs Terminal Networking

It should now be apparent that the purpose of higher level protocols is to connect computers, not
just terminals, and to use the capabilities of those computers effectively. (Running a “terminal pro-
gram” on a PC is n o t using it effectively.) True networking is much more than just providing “virtual
wires” between dumb terminals’ or even a dumb terminal and a bulletiin board system. While packet’s
use of faster modems, addressing, error detection and retransmission does provide channel sharing and
error-free communications, without higher level protocols running on the user’s computers the result is
guah’tatively little different than ordinary radio teletype (RTTY)? In contrast, t r u e networking involves
one or more high level (application, presentation and transport) protocols plus a multi-tasking operating
system running in the end-user’s machine, performing end-to-end functions automatically on behalf of
human users. For example, a single system might respond automatically to remote requests for file,
accept remotely sent files and electronic mail for storage, and initiate similar operations on other com-
puters in response to local commands -- all simultaneously, with minimal operator intervention. In the
following sections I will review the major ARPA protocols and describe the implementation of those in
the KASQ Internet software package, starting with the top layers and working down.

5. Internet Software Components

A major goal of the KASQ Internet package was that multiple network activities should go on
simultaneously. This greatly increases the usefulness of the system, and alleviates many other poten-
tially troublesome problems. For example, “stuck connections” caused by the other station abruptly
disappearing are only a minor annoyance, as the only resources wasted are a few bytes of RAM. The
system can still be used by others; keepalive timers aren’t necessary.

Since MS-DOS is not a multitasking system, all of the protocols were combined in a single MS-
DOS program called net.exe, and a very simple form of multitasking isI performed internally by a “com-
mutator loop” mechanism. 3 The main loop of the program sequentially polls various routines to see if
they need service. For example, the keyboard is checked for input, then the serial input buffer is
checked for characters, then the Ethernet receiver is checked for packets, then the timer is checked to
see if a tick occurred, and so on.

When events occur, calls are made to the appropriate routines; incoming data triggers the
appropriate link level protocol modules, which in turn call the higher llevel modules, and eventually the
applications are called. This is known as an upcaN or pseudo-interrupt mechanism, and has been used
for other small networking packages such as MIT’s PC/IP. It is important to note that there is no con-
ventional sleep/wakeup mechanism; each application must provide functions to be called asynchro-
nously by the system. These functions cannot block or hog the processor; they must respond to the
event and return. The applications must therefore be structured as state machines driven by upcalls.
While this is a somewhat unusual environment for a programmer, it isn’t too hard to get used to it. In
fact, it encourages the programmer to think about what should happen for every possible combination
of state and event; it’s easy to get sloppy about this in a conventional environment by assuming that
only the desired event can occur in a certain state.

1 The term dumb terminal was originally a trademark of Lear Siegler Corporation for their ADM-3 CRT ter-
minal. The term quickly became generic, referring to any keyboard/display (or printer) combination lacking pro-
grammability and local file storage. Only recently has it really become pejorative, since many complete personal
computers now cost significantly less than dumb terminals.

2 Some call conventional packet operation “RTTY packet”.

3 This is somewhat similar to the multitasking form of FORTH known as IPS, or Interpreter for Process
Structures. IPS was developed by DJ4i’C for use in the AMSAT Phase 3 satellites.

91

I do not mean to imply that the commutator loop approach is superior. I originally chose it as a
simple expedient, and since then I’ve been surprised by how much I’ve been able to do with a very
small amount of memory. The entire executable program net.exe, containing all of the protocols about
to be described, is only about 60K bytes. In comparison, the popular PC terminal program “Procomm”
is almost three times as large! 4 One major drawback of the upcall structure, however, is the lack of
application portability. Future developments may include a true multitasking kernel so that a more con-
ventional programming environment may be supplied as well.

The user interface is simple, but functional. Commands to invoke each of the applications are pro-
vided, along with others primarily useful for monitoring and statistics gathering. Up to ten client “ses-
sions” may exist at any one time, and the user may switch between them at will. There is no limit on
the number of server sessions that may exist at one time other than the memory available on the
machine for buffering and housekeeping.

5.1. Telnet, FTP and SMTP Applications

While many application protocols have been built for packet networks, three are most useful:
remote login, file transfer and mail transfer. This is reflected in the “big three” ARPA Internet applica-
tion protocols: Telnet, FTP and SMTP respectively. Each application protocol is further broken down
into client and server halves. Clients act on behalf of local users by initiating communication with
remote servers that passively await their requests.

Clients and servers for all three protocols are presently in the software, although the telnet server
does nothing more than route an incoming connection to the console for keyboard-to-keyboard chat-
ting. (MS-DOS isn’t a timesharing system, so it wasn’t possible to provide conventional telnet service).
FTP supports both ASCII (default) and binary file transfers, with passwords protecting against unauthor-
ized file access. SMTP is presently functional but it does not have the features of mailers found on
larger systems such as mailing lists and mail-level forwarding. Two miscellaneous application servers
are also provided: echo and discard. They are intended mainly for testing.

5.2. TCP and UDP Transport Protocols

The applications just described all use TCP, the Transmission Control Protocol. TCP is a
transport/session layer (level 4 and 5) protocol that provides virtual circuit services on an end-to-end
basis. The use of TCP is not mandatory, however. Some important applications prefer not to use vir-
tual circuits, so an alternative is supplied: UDP, the User Datagram Protocol. UDP is important for rout-
ing algorithms, information broadcasting and transaction-oriented applications such as the Network File
System (NFS) .5

The TCP was the first module written for the package and is now quite mature. Three upcalls are
provided to the application layer: receive, send and protocol state change. The receive upcall indicates
that data has arrived which may be read from the receive queue by the application. The send upcall
indicates that outgoing data has been acknowledged, freeing up buffer space that may now be used for
additional transmissions. The protocol state change upcall indicates when connections are opened and
closed, and applications use these to drive their own state machines and to determine end of file. Much
effort has gone into tuning the TCP retransmission algorithms for efficient operation across amateur
packet radio, including a novel approach to measuring round trip times accurately during periods of high
packet loss. [6l

The UDP module is much simpler than TCP. Only a receive data upcall is provided.

4 I do admit that net.exe lacks certain essential features, e.g., exploding windows and sound effects.

5 NFS is not implemented in the package (yet) so it will not be described here. However, its popularity is
mushrooming around the Internet. On many Ethernet local area networks (LANs) NFWUDP traffic now exceeds
that using TCP.

92

5.3. Internet Protocol UP)

The core protocol of the ARPA Internet is called, naturally enough, the Internet Protocol (IP). IP
sits immediately above the existing lower level networks (subnets in ARPA terms). This is the only man-
datory protocol in the entire suite. The higher level protocol in use (TCP, etc) need be agreed upon only
by the hosts involved, but you can’t be “on the Internet” unless you run IP.

Since IP is “spoken” by hosts and “interpreted” by the gateways (packet switches), I found it
convenient to split my IP into two halves. The upper half contains the parts of IP relevant to a host
(outgoing packet generation, incoming packet demultiplexing, fragment reassembly). The lower half
contains the IP packet switching components (routing and fragmentation). Every host is also a gateway,
i.e., it will route and switch traffic that is just passing through in addition to sourcing and sinking its own
traffic. If the code is to be run on a dedicated gateway, the host functions can be removed to save
space.

The packet routing portion of my IP includes a generalized form of subnetting, the ability to struc-
ture the address space into a tree-shaped hierarchy. [3] Each entry in the routing table includes a width
field saying how many bits in its address field are significant. When packets are routed, the algorithm
finds the routing table entry providing the “best match” to the leading bits of the destination address.
This allows large blocks of addresses that share a common next hop, e.g., all west coast addresses in
an east coast switch, to share a single routing table entry. This reduces the average size of a routing
table enormously while still allowing arbitrary routes to be set up. Even this relatively complex tech-
nique, however, only takes about 6 milliseconds to route a packet on the IBM PC, thereby refuting the
argument that datagram routing “costs” too much.

No automatic routing algorithm is provided as yet; the routes must be set up manually. Automatic
routing is clearly a desirable long-term goal, but it is a difficult and challenging problem in any network
so I have deferred it.

5.4. Subnet Protocols

Link/subnet drivers for AX.25 Level 2, Ethernet and asynchronous point-to-point links are
presently provided. In the spirit of the Internet, others can be added easily as they become available
(e.g., NET/ROM, Texnet and COSI).

The AX.25 Level 2 driver is at present very simple; each IP datagram is encapsulated in a single
AX.25 UI (connectionless) frame. The KISS TNC [I] was developed to allow these “raw” packets to be
generated. This was an expedient for initial operation; it is not the only way that IP can be run on top
of AX.25. It is entirely possible to use the full-blown connection-oriented AX.25 protocol under IP if
necessary to improve hop-by-hop reliability; this will have to be done to use the internals of NET/ROM
to move IP traffic, for example. On the other hand, collision-free backbone channels would do well to
avoid the extra complexity and overhead of link level acknowledgements.

It is incorrect to say that IP cannot be run efficiently on noisy poor channels because of its rela-
tively large header size. While not done at present, the subnet or link imay perform intranet fragmenta-
tion. That is, it may chop up a single datagram into multiple smaller packets and reassemble them tran-
sparently at the other end of the link before passing them up to IP. ‘This is distinct from the internet
level fragmentation done by IP, and is preferable for performance reasons when the subnet has an
unusually small packet size limit. As for the “inordinate” overhead associated with a 40-byte TCP/IP
header, consider that even at 1200 baud, 40 bytes takes only a quarter of a second to send. Many
stations spend more than this just keying up the transmitter. As faster modems (e.g., the new
WA4DSY 56 kbps design) become widespread, header overhead will become even more of a non-issue.

5.5. The Address Resolution Protocol (ARP)

The Internet Protocol provides its own addressing independent of that used in the subnetworks. It
is therefore necessary to map IP addresses into subnet addresses for each hop. Sometimes this can be
done by making the subnet address part of the IP address, but frequently this isn’t possible because the
subnet address is too big. This is the case with both Ethernet and AX.25, so the Address Resolution
Protocol was implemented. [71

93

The ARP module in the package serves both subnet protocols. Since ARP requires a broadcast
facility in the subnet, I chose “QST-0” as the AX.25 broadcast address. Manual commands are pro-
vided to manipulate the ARP translation table, either to override the automatic mechanism or to specify
multi-hop digipeater paths. The latter must be done manually since the AX.25 subnet can no longer pro-
vide broadcasting when digipeaters are involved.

6. Availability

The entire software package, including executable programs, complete source code and documen-
tation, is available to interested amateurs for the cost of copying only. It may be freely used and copied
for noncommercial purposes only. Brian Lloyd, WBGRQN, handles the distribution on MS-DOS format
floppy disks; send him $5 to cover costs and he will provide disks, mailers and postage. Persons out-
side the US should add enough to cover higher postage costs.

7. Credits

Many people have contributed in various ways to this effort, so what follows is necessarily only a
partial list. Bdale Garbee N3EUA wrote the mail command bm, and coordinates the integration of
software releases. Mike Chepponis K3MC wrote the first KISS software for the TNC-2 and has been
instrumental in encouraging others to support other TNCs (see [I 1 for a complete list). Jon Bloom KE3Z
contributed the driver for the HAPN HDLC adapter card for the PC. Brian Lloyd WBGRQN has widely
promoted the amateur use of TCP/IP, writing introductory magazine articles geared to the novice user.
When the code first became available, Brian organized a local group of users in the Washington DC area
that has since grown to several dozen; their feedback, as well as that of other groups around the world,
has proven very useful in improving the package. Brian also spends a considerable amount of time dis-
tributing the package on floppy disk by mail.

While I wrote the bulk of netexe myself, others supported my efforts by patiently answering my
many questions about the details of the protocols. Thanks go to Dave Mills W3HCF of the University
of Delaware and Jon Postel of the University of California Information Sciences Institute.

8I

1 .

2 .

3 .

4 .

5 .

6 .

7 .

References

Chepponis, M., and Karn, P., “The KISS TNC: A simple Host-to-TNC communications protocol,”
this conference.

Karn, P., “TCP/IP: A Proposal for Amateur Packet Radio Levels 3 and 4,” Fourth ARRL Amateur
Radio Computer Networking Conference, San Francisco, March 1985, p. 4.62.

Karn, P., “Addressing and Routing Issues in Amateur Packet Radio,” Fourth ARRL Amateur Radio
Computer Networking Conference, San Francisco, March 1985, p. 4.69.

“For own in-house network, COS selects TCP/IP,” Data Communications magazine, June 1987.

Bloom, J., “NET.EXE: Beyond the TNC,” Gateway Vol. 3 No. 12, Feb 6, 1987.

Karn, P., and Partridge, C., “Improving Round-Trip Time Estimates in Reliable Transport Proto-
cols,” SIGCOMM Workshop proceedings, Stowe, Vt., August 1987.

Plummer, “Address Resolution Protocol,” ARPA RFC 826.

94

