PACSAT SOFTWARE

by Harold Price NK6K and Robert McGwier N4HY

Abstract

The evolving structure of the Microsat system soft-
ware is discussed. With a launch services agreement in
hand, several “Pacsats” should be in orbit in 1989; they
will have more memory and a more complex suite of sys-
tem and application programs than any amateur spacecraft
launched to date.

Background

“Pacsat”, a dedicated packet radio satellite, is a con-
cept that has been floating around in the amateur digital
and space communities for more than six years. The ba-
sic concept is simple, using a low orbit satellite to “carry”
messages from party to party rather than doing a real-time
transfer though a high orbit satellite that both parties can
see at the same time. Microsat is a specific AMSAT-NA
satellite system that hosts a Pacsat mission.

A paper in these proceedings by Tom Clark gives an
overview of the current Microsat design. Another paper
by Lyle Johnson describes the hardware that supports the
software described in this paper.

One of the large benefits of the amateur radio “Pac-
sat” concept has always been low cost. Not that hams are
necessarily frugal, we’'d spend it if we had it. If fact, it has
been said that a ham will spare no expense in buying other
parts to go with something he got for free. But we haven’t
got it, so we’re forced to be smart. There are several cost
reducing concepts in Microsat. One is small size. This
reduces building costs (we’re talking small, not miniatur-
ized, which drives costs up). It also reduces launch costs,
which are typically pegged to launch weight. Another cost
reducer is dependence on off-the-shelf commercial grade
parts. We're using extended temperature range parts, for
the most part, but avoiding the much more expensive space
rated parts. A combination of knowing the limitations, a
fairly benign low orbit,, and paying attention to the fine
details of thermal control, allows us to get away less ex-
pensive electronics.

Another cost reducing element is the use of off-the-
shelf software, and a low cost software development en-
vironment. As anyone who uses computers knows, a low
cost software development environment has two compo-
nents, the actual cost of the software itself, and the cost
of the labor required to use the software to do something
useful. With Microsat, a serendipitous turn of events has
led to a development environment which should be bot h.

Off the Shelf

Microsat is a very low cost spacecraft. One reason

is that it uses off-the-shelf parts and the simplest possi-
ble hardware design. The spacecraft itself is minimal, it
is “stabilized” only by a bar rnagnet, which locks with
the Earth’s magnetic field and keeps the spacecraft from
presenting the same face to the sun all the time. The in-
terconnecting wiring harness is minimal, using a mere 25
wires and depending on serial bus controllers in each mod-
ule to multiplex several control and sensor signals on a few
wires. The CPU hardware uses standard commercial parts,
such as a V40 CPU, closely related to the CPU found in
IBM PCs, rather than some exotic, rad hard bit slicing wiz
bang.

We’d also like the software to be off the shelf and
straight-forward, able to take advantage of standard de-
velopment tools and languages, and to use large blocks of
existing protocol and bulletin board code.

With these goals in mind, Microsat will be the first
amateur spacecraft to use an off- the-shelf high level lan-
guage as its major implementation standard, Microsoft
C. It will also use an off-the-s’helf multi-tasking operat-
ing system from Quadron Service Corporation called qCF.
It should be pointed out that the University of Surrey’s
UoSat-D, to be launched on the same mission, will also use
some of the same software, so the distinction is a shared
one.

why C?

Why, in fact, a high level language? The purpose of
the Microsat spacecraft is to support a 16 bit, 5 MHz com-
puter with 10 Mb of memory. In addition to controlling the
spacecraft, the computer will support one or more complex
data communication protocols, a file system, memory er-
ror detection and correction, and data compression. It will
compute its sub-satellite point (the point on the ground
immediately below the satellite:) so that it can switch the
downlink transmitter to low power while over dead zones,
or determine when to grab an image from the CCD cam-
era. This will require floating point math. Last but not
least, the software must be written in time to support a
possible January 1989 launch. Doing all this in assembler
would be a daunting task.

C, while not a perfect language, is at least ubiquitous.
This means that many people write in it, including many
hams. Microsoft C is well known, has copious documen-
tation, has many debugging tools, and is easily available.
While it has some bugs, they are well documented, and are
in areas we are unlikely to use:, such as graphics. It will
generate code that is small enough to fit in the available
space, and will run fast enough to support any modem
technology we are likely to fly for some tirne to come.

145

For another advantage, implementations of the ama-
teur radio packet protocols are available in C, including
the KA9Q AX.25 and TCP/IP.

C is even nicer though when a support library of in-
terface routines are available to support inter-task commu-
nication in a real-time system such as Microsat.

Why Multi-tasking?

Figure 1 shows a number of the tasks that the Mi-
crosat CPU will have to support, organized by major func-
tion. These tasks will be described in detail later. The
chart is greatly simplified, as it leaves out such things as
the software to manipulate the 10 Mb of memory, 2 Mb
bank switched and 8 Mb as a randomly addressable se-
rial buffer. Many non-related tasks must be carried on
concurrently, such as searching the BBS message base for
all messages to W1AW while monitoring battery voltage.
Some things occur on demand, such as downloading a file,
others happen based on time, such as including a telemetry
frame in the downlink stream once every n seconds.

One way in which this can be done is to write each
function as a subroutine to a single large program and
link them all together. The main program would contain
a table of subroutines to call when a timer it maintains
expires. It would also contain what is commonly called
a “commutator loop”; a set of subroutines representing
major functions which are called in turn, each does some
processing and returns to the main loop. A good example
of this type of program is the TCP/IP package by Phil
Karn, KA9Q, and others. FO-12 also uses a commutator
loop.

Commutator loops have several disadvantages, how-
ever. The program is linked into one big unit, meaning that
all parts of the program have to be aware of globals and
subroutine names, even parts who’s only point in common
is that they are both called by the same main program
Because the program is one linked unit, individual parts
can’t be easily replaced or reloaded. While commutator-
loop programs are effective in the right circumstances, in
general the larger they get or the more disparate the parts,
the harder they are to develop and maintain. KA9Q is also
leaving the commutator behind for a home grown kernal
for net.exe for reasons like those given here.

Another alternative to true multi-tasking is a multi-
threaded FORTH. The Phase 3 satellites Oscar 10 and
13 use IPS, a FORTH-like system. Much has been said
about FORTH and its applicability to real-time control
programming, it was originally developed to control large
telescopes. With FORTH you either love it or hate it,
and most of the prospective programmers for the Microsat
project were in the latter category. FORTH is not particu-
larly optimized for things like AX.25 protocols and BBSes,
and there are no existing amateur packet radio applications
in this language. If FORTH were chosen, we’d be starting
far down on the power curve.

A true multi-tasking system would have the following
advantages:

1) All programs (tasks) could be writ ten as separate
entities. This eliminates global name and other problems,
and makes it easier for several widely separated program-
ming groups to contribute for the effort.

146

2) Since tasks are separate programs, they are easier
to generate and test.

3) Tasks can be easily removed and reloaded.

4) The multi-tasking scheduler ensures that all tasks
get a chance to use the CPU. More types of programming
errors or failures are survivable, a glitch in one task will
not necessarily halt processing in other tasks.

A true multi-tasking system seems more desirable, the
problem is finding one for a particular hardware system.
Fortunately, serendipity smiled on us. Early this year the
generic Pacsat CPU design was upgraded from the 1984-
style NSC800 Z-80 8 bit class to the 16 bit 8086 class. The
serial communications chip was an 8030/8530 surrogate.
It just so happens that someone with a long-time inter-
est in PACSAT software (NK6K) was one of the founders
of a company that has been marketing a real-time multi-
tasking communication package for an 80186,/8030 copro-
cessor card since 1986. One of the other founders, Wally
Linstruth, WA6JPR was a charter member of the ARRL
Digital Committee and was one of the first packet users in
southern California. In short order, the company, Quadron
Service Corporation, agreed to port its software to Mi-
crosat, and to give AMSAT free development software and
no-cost license agreements for the use of the system on
amateur radio spacecraft.

Attributes of the Quadron Multi-tasking system

1) Pre-emptive scheduler. This is a buzzword that
means a task is given a certain amount of time to run, and
is then placed at the end of a list of tasks waiting to run.

2) Sleep. Tasks can put themselves to sleep, meaning
that they have nothing to do at the moment, and don’t
need to be scheduled on the CPU. Going to sleep is not
something that a normal, single task program such as any
standard PC-DOS program needs to do. Since there is
only one task in such a system, if it has nothing to do it
might as well loop. In a multi-tasking system, other tasks
may have something to do, and it is more efficient if an
idle task is simply not run rather than have it loop until
it gets pre-empted. Tasks are automatically put to sleep
if they start an operation that can’t yet be completed, for
example reading an input packet when one hasn’t been
recieved. The scheduler will start running the task again
when input is available.

3) Timers. A sleeping task can also be awoken when
a timer it has started goes off.

4) Inter-task messaging. Many of the tasks in Mi-
crosat will want to exchange data with other tasks, for
example, the BBS will want to send data to the AX.25
output task. This is handled through a mechanism called
streams.

A stream is like a little Local Area Network (LAN)
connecting tasks together. A task opens to a stream which
establishes a name on the “LAN”. Other tasks can send
messages to that name. Messages are queued. A sleeping
task will wake up when a message is sent to it. For ex-
ample, the AX.25 task sleeps until a task writes a message
containing outbound data to it. The AX.25 task processes
this data into an AX.25 frame and then writes that frame
i N amessage to the HDLC Driver. The AX.25 handler
is also awoken when the HDLC driver sends it a received

-"—”““ i N‘\\‘ -..~.-.~‘~.~
Telemetry House- Camera BBS Telnet FTP
VAaaninm CAantral
I\UUPIIIH A\VAVARRRRV]]
\ i
AX.25
Handler
Memory
Wash
| |

HDLC
Driver

AART

Driver

Figure 1.
wrame through a stream. Flow control limits may be set on
streams, a task can. be put to sleep if it writes too many
messages; it is awoken when the target task reads the mes-
sages. This keeps one task from using all the buffers by
flooding a second task with messages.

The inter-task messaging is implemented with calls
similar to the standard C open, close, read, and write sub-
routines. Aside from using these calls to send data to other
tasks, and the desire to find good places to go to sleep,
writing a Microsat application program such as the BBS
is pretty much like writing any other C program. Large
portions of these programs can be tested on a regular IBM
PC using Codeview, which should considerably speed de-
velopment .

Specifics

Now that we’ve discussed some of the major design
decisions, let’s review the major tasks, as shown in figure
one. Most of the fine details are still being worked out, the
following discussions hit the high points.

Kernal

Not shown in figure one, the kernal supplies the basic
multitasking services. It manages the hardware timers,
sets up memory, loads and unloads tasks.

Possible Microsat Task Configuration

File Support

Not shown in figure one, the file support is imple-
mented as a task. The low level C read and write sub-
routines in the standard C library are replaced by routines
that format an 170 request and send it through a stream
to the file support task:. Acting much like an IBM PC ram
disk driver, the file support task uses the 10 Mb of mem-
ory to emulate a disk. File support provides blocking and
deblocking services as well as providing error correction for
single bit errors (see the Mem Wash description).

BBS

This will be the most visible program to users on the
ground. The major goal of the two PACSAT Microsats
is to provide a bulletin board and file service. There will
probably be two distinct interfaces. One will be an inter-
face familiar to most packet users, the standard RLI/MBL
BBS. This is for casual or occasional users who just want
to see what’s going on or forward an occasional message.

A second interface will be optimized for computer to
computer transfers. While the RLI/MBL interface is cur--
rently used for this as well, Microsat will be in a differ-
ent environment. The current auto-forwarding software is

147

used a network where several hundred stations bang away
at each other 24 hours a day, or at least several hours, HF
conditions permitting. In the lower latitudes, a Microsat
will be visible about 10 minutes at a time, four or five
times a day. We’ll want to take advantage of every sec-
ond of that time. We won’t want to wait while messages
are sent one at a time, reprompting for each new message.
We won’t want to discard a long message just because the
satellite went out of range before the last packet was sent.
We’ll probably want to block a large number of messages
in a single file and send full speed, letting Microsat unblock
them later. If a file is partially received, we’d like to be
able to continue from the last byte received on the next
pass. '

The second access method could be used by a smaller
number of backbone forwarding stations. The Microsats
will be an experimental platform for testing various ways of
simultaneously maximizing message throughput and max-
imizing the number of users who directly interact with the
spacecraft. On the surface these items appear to be mutu-
ally exclusive.

AX.25 handler

If launch occurs as scheduled, the only protocol sup-
ported will be AX.25. The software will be a derivative of
the KA9Q AX.25 code. It will support a large number of
simultaneous connections through all of the uplink chan-
nels. When no frames are queued for the downlink, the
AX.25 handler will send a message to the Telemetry task
asking it to downlink a telemetry record. The telemetry
task will also periodically send data based on a timer.

Sometime after launch, (time permitting before), we
should also be able to test TCP/IP as an access method
in addition to AX.25. AX.25 will at all times remain avail-
able.

HDLC driver

The HDLC driver passes frames between other tasks
and the uplinks and downlink. The driver is non-trivial.

The hardware design supplies several DMA channels, but
even so there are more I/0 channels than DMA, so the
driver must do both DMA and straight interrupt driven
1/0. To get the most out of the available processor power,
and to enable later Microsat missions to use even higher
baud rates, the HDLC driver is written in assembler code.
Skip Hansen, WB6YMH, is a real wizard at this sort of
thing, and will be porting the HDLC drivers he wrote for
Quadron to the Microsat environment.

Although the HDLC driver will probably just be feed-
ing the AX.25 handler at launch, it will later also be the
front end for the IP module.

Housekeeping

For all these features to be usable, the spacecraft must
be maintained in good operating condition. For example, if
the battery voltage goes below a certain preset threshold,
low power only should be allowed from the transmitter
until recharge. Command stations must be able to talk
to the algorithms that monitor optimal settings for power,
solar panel operating points, and upload targets for these
control algorithms. The command must also be able to

148

manually intervene when the automatic algorithms don’t
do all that we have asked them to. It might be best to a
only allow low power mode over sparesely populated areas
on the globe unless a valid packet is heard. These and
other spacecraft maintenance functions are handled by the
housekeeping modules.

Telemetry

The Telemetry module periodically gathers telemetry
data by using the AART driver to collect data from other
modules. The data is both sent to the downlink as a Ul
frame for real-time monitoring, and is also stored in a vir-
tual disk file in memory. The “whole orbit data” format,
where the values for telemetry channels are store over sev-
eral hours and are later downlinked has been proved pop-
ular with users by the UO-9 and UO-11 spacecraft. This
data would be available in a file and could be downloaded
by command stations and users.

The Telemetry module would be addressable via the
AX.25 uplink by command stations for the purpose of mod-
ifying the interval used for dumping Ul telemetry frames
and for storing whole orbit data. When diagnosing a prob-
lem, the sample rate would be increased, as would the total
memory to be dedicated to storing data. For example, the
battery voltage can be sampled once every two millisec-
onds for a 24 hour period, and the data stored in 8 Mb of
memory. It would, of course, take a long time to download
that file.

Memory Wash

Some of the memory on the spacecraft is protected
with hardware Error Detection and Correction (EDAC)
circuitry. When an error is induced in memory by an ener-
getic particle normally filtered out by the atmosphere, the
EDAC will correct the error on a read and place the proper
data on the bus. The corrected byte is not written back
into memory automatically by the hardware. If an error is
allowed to linger, there is a chance that a second bit in the
same byte will get flipped. Since the hardware can only
properly fix single bit errors, you’d like to fix all single bit
errors before they become multi-bit. In a process called
“washing memory”, a task periodically runs through the
EDAC memory, reading and writing every byte, causing
the corrected byte to be written back into memory over a
damaged one.

Most of the memory is not protected by hardware.
The reason is economics, 12 bits are used to store each 8
bit byte in hardware protected memory. Hardware EDAC
is used for memory that programs run out of, since a pro-
gram byte in error will usually lead to no good. Software
algorithms must be used to protect the remaining memory.
This memory is used to store data files and messages. The
ramdisk routines will use software EDAC to correct errors,
but if a “disk sector” goes unread for too long, multiple bit
errors may occur. To reduce this chance, the memory wash
task periodically reads all “disk sectors” and writes them
out.

The Memory Wash program responds to queries from
the Telemetry task and reports the numbers of errors cor-
rected and the current position in the wash cycle. This
information then is incorporated into the standard teleme-

try frame.
AART Driver

This module reads AART commands from other tasks
out of the message stream, and sends them to the AART
serial control channel. If required, it uses the CPU boards

A to D converter to read a data value and return it to the
requesting task.

Camera Control

In the CAST Microsat, the primary mission is the
CCD camera. In this spacecraft, the BBS will only be
used for messages about stored images, and to store the
images themselves. Weber State will write this application
program.

IP and TCP

As an experiment, the TCP/IP suite of protocols will
be ported to the Microsat CPU. This will allow proces-
sors such as FTP to be used in lieu of the BBS for file
downloading.

FTP

File Transfer Protocol, part of the TCP/IP suite. It
will have access to the various data files.

TELNET

The telnet protocol can be used in the TCP/IP suite
to pass a stream of characters between a keyboard user
and a program, and would thus serve as an alternate path
to the BBS.

Implementation Schedule

The software group is aware of the tight schedule for
the Spot 2 launch, and the need to balance the desire to
do all of the above but be ready for testing in a few weeks.
Therefore, we’ve separated tasks into several groups.

The highest priority group contains those things which
must be present if anything useful is to be done with the
spacecraft. This group includes the kernal, the HDLC
driver, the AX.25 handler, the AART driver. To allow any
reasonable development of the applications, these tasks
must be present in their near-final form for testing and
launch. This group also includes the bootstrap ROM code,
which is being implemented by Hugh Pett in Canada, and
is beyond the scope of this paper.

The next priority group are the applications which
are required to run the spacecraft. Here, very simple tem-
porary modules will do with the fancy ones coming later.
The simple ones will be done ASAP; the fancier ones will

be done before launch, time permitting. This group in-
cludes telemetry and housekeeping and memory wash. It
also contains a very rudimentary BBS, with put-message,
read-message, and list-message commands. The first BBS
will also place its messages in linear memory, not in files.

Next are those things which are required before the
final, fancy applications can be written. This is primar-
ily the virtual ramdisk task. Finally comes the additional
access methods such as TCP/IP.

Wrap up

This paper has discussed the current thinking in the
area of Microsat operating software. Work to implement
these plans is underway, some C code has already been
run on the wire-wrap CPU prototype. Our choices of high
level language, multi-tasking operating system, and im-
plementation methodology have changed the project from
impossible to merely difficult.

Acknowledgments

Thanks to Lyle Johnson WA7GXD for another fine
hardware design, Chuck Green NOADI for yeoman work at
the wirewrap table; Skip Hansen WB6YMH for his work on
the 1/0 drivers, Hugh Pett for the bootstrap loader; Mar-
tin Sweeting G3YJO and Jeff ward GO/K8KA for past,
present, and future collaboration on what a pacsat should
do and how it ought to do it. Thanks to Jan King, W3GEY
and Gordon Hardeman, KE3D, for stirring up this new
project with the initial Microsat idea.

149

