
LZW Compression of interactive network traffic

Anders Klemets, SMBRGV

Swedish Institute of Computer Science
Box 1263

s-164 28 Kista
SWEDEN

ABSTRACT

This paper summarizes some aspects of data compression and describes how it
can be used to increase the throughput of a computer communications link. The
popular IZW algorithm is studied in detail, and special consideration is given to the
problems that arise when using LZW to compress interactive traffic. An LZ’W imple-
mentation for the KA9Q Internet package for compression of interactive data is
presented. Finally, the algorithm used in this implementation is compared to the
V.42bis modem data compression standard

1. Introduction

There are different to ways increase the
effective transfer speed, or throughput, of a
computer communications link. An obvious way
might be to increase the bit rate of the
hardware. This will usually involve obtaining
faster modems, or switching from an RS-232
interface to some other faster interface. But
there might be factors that limit the extent to
which the physical speed can be increased. For
instance, all physical media have a limited
bandwidth. For telephone lines the bandwidth is
only about 3 kHz. For radio channels the
bandwidth is primarily limited by regulations.
The usefulness of the equipment may also be
limited by its price and by the need for back-
wards compability.

In some cases one may achieve substantial
improvement of throughput by replacing or
modifying the different communications proto-
cols that are in use. If the link level protocol
has not been properly designed, it might impose
considerable overhead. It has also been shown
to be possible to make significant improvements
to the performance of network and transport
protocols. In some cases just altering the timing
and flow control mechanisms is enough
[Jacobs88].

possible to improve
yet another protocol
stack. This paper

describes how a data compression protocol can
be used at the presentation la:yer.

2. Compression methods

Compression methods can be grouped into
different categories. For instance, when
compressing sound or images, it can make sense
to discard some of the information. The
decompressed data will not be identical to the
original, but when done correctly it may not be
noticeable to humans. Such compression is
called irreversible. In the general case, how-
ever, one would like &I have reversible
compression, i.e. the decompressed data should
be identical to the original data. Anything less
would be unacceptable when, for example,
transferring binary computer programs.

There are two important compression
techniques: statistical coding, and dictionary
coding. In statistical coding; each character is
assigned a codeword based upon how frequently
it occurs. Common charactm get short code-
words and the more unusual characters get
longer codewords. In dictionary coding, strings
of characters are entered in a dictionary. When-
ever the string occurs, a codeword representing

76

its dictionary entry is used. See a compression
textbook such as [Storer88] for a more
comprehensive description of these techniques.

Dictionary coding is always less efficient
than statistical coding. Bell891 (It gives a lower
compression ratio. Compression ratio is defined
as the size of input data divided by the size of
its compressed equivalent.) But dictionary cod-
ing is usually faster than statistical coding. This
is especially important when choosing an algo-
rithm for compressing data in real time. The
compression algorithm must be able to generate
compressed data at the speed supported by the
underlying network layers divided by the
compression ratio. Similarly, the decompression
routine must be able to generate decompressed
data at the speed of incoming compressed data
divided by the compression ratio. If any of these
two relations do not hold, the compression
method will not increase the throughput of the
communications link. However, in this case it
might still be worthwhile to use compression.
For instance, there might be a cost associated
with the amount of data transmitted over the
connection. Compressing the data would lower
this cost. On a slow shared channel (e.g. a low
speed packet radio channel) compression might
be beneficial to the overaIl usage of the channel,
even if the compression does not increase the
individual throughput.

3. LZW compression

Ziv and Lempel Eiv77, Ziv88] presented
efficient compression methods that use diction-
ary coding. Several variants of the Ziv-Lempel
methods exist, the most widely used seem to be
the LZW method Welch841 and its derivatives.
A pleasing characteristic of these methods is
that the encoder and decoder wilI build their
respective dictionaries dynamically. The
encoded data itself is used to build the dic-
tionaries. At no point does the content of the
dictionary have to be transferred.

An LZW encoder that operates on
sequences of 8 bit bytes wi.lI emit codewords
that are of a fixed width (at least 9 bits.) The
dictionary is initialized to contain codewords
representing single bytes with the values O-255.
The operation of the encoder is to read bytes
from the input strm concatenating them into a
string. It pW with reading bytes as long as
it can find an entry for the string in its diction-
ary. If the string is not in the dictionary, it will
be added, and a new codeword will be assigned

to the new dictionary entry. Following this, the
codeword fm the previous version of the string
will be emitted. ‘Ibe only difference between
the previous and the current version of the
stringisthelastbyte.Thislastbytewillnowbe
usedasthe~tandonlybyteinthestring.The
process is then repeated by reading yet another
byte from the input stream.

The following example is in accordance
with the original LZW specification, with the
addition of a special flush axleword. Its use is
described later. Let us consider the encoding of
the string “ababc.” The encoder will read the
character ‘a’ from its input stream. The string is
now “a”, and since it is a one byte string, we
know that it is always in the dictionary. Then
‘b’ is read. The string, “ab”, is not found so it is
added to the dictionary and the codeword for
“a” is emitted. ‘IBe string now becomes “b”. The
character ‘a’ is read. The string “ba” is not
found, and is thus added to the dictionary. Then
the codeword for “b” is emitted. The string is
now “a” and ‘b’ is now read. The string “ab” is
found in the dictionary, so yet another character,
‘c’ is read. “abc” is not in the dictionary, so it is
added, and the codeword for “ab” is emitted,
and the string becomes “c”. At this point there
are no more characters in the input stream. We
are supposed to hold on to the string “c” at least
until we have read one more character, but since
the input stream is empty, we will simply
transmit the codeword for “c” followed by a
special flush codeword. We will refer to this
from now on as the “flush” operation. The fish

codeword is needed to indicate that the normal
flow of compression has been broken by flush-
ing the content of the string onto the output
stream.

a b

a

a
b

b C

ab C

I Figure 1.

11 This figure illustrates the synchronizat.ion between the 11

11 enaxk and the deader. The decoder COIWUAII~~~ lags 11

/one codeword behind the encoder. When the inptll
lIstream ends, the encoder must emit the codeward of II

II the string it was waiting to encode and emit the spe- ll
11 cd jbh COdeword (denoted with a “0” here.) other- II

11 wise tie deo~der win not receive the last codewmd II

(“c” in this example.)

The decoder will build its dictionary only
using the codewords it is receiving. When

receiving a codeword, it will take the first char-
acter in the string that the codeword represents,
and concatenate it with the string represented by
the previously received codeword. The result-
ing string will be added to the dictionary.

In the example above, the codeword for
“a” is received. There was no previously
received codeword, so no particular action is
taken with respect to the dictionary. The code-
word is now decoded into ‘a’ which is emitted
to the decoded output stream. Then the code-
word for “b” is received The concatenation of
the “a” and the first character from the string
“b” gives the string ‘lab”. It is added to the dic-
tionary and ‘b’ is sent to the output stream.
Then the codeword for “ab” is received, causing
the string “bat’ to be added to the dictionary.
Characters ‘a’ and ‘b’ are sent to the output.
The codeword for “c” is received. The string
“abc” is added to the dictionary, and ‘c’ is sent
to the output. Now the special flush codeword is
received. It causes the recording of the last
received codeword to be cleared. Without it,
should compression later resume, the decoder
would construct a string lzginning with “c”
from the first codeword. That string would then
incorrectly be added to the dictionary, creating
havoc. Incidentally, since the decoder constructs
new codewords using previously received code-
words, the slightest data transmission error may
cause large parts of the dictionary to become
bogus.

It may sometimes happen that the decoder
receives a codeword that it does not yet have in
its dictionary. Consider for instance if the input
stream consists of the string “ccccc”. This will
be encoded as the codewords for “c”, “cc”, and
“cc” followed the flush codeword. When the
first “cc” codeword is received, it will be unk-
nown by the decoder. However, this situation
can only arise if the encoded string is the same
as given by the previous codeword followed by
the first character in that same string. Evaluating
this rule will yield the desired string, “cc”.

4. Compression of transport protocol data

There has been recent studies [Jacobs901
on how to compress the headers of the TCP/IP
protocol. This improves the efficiency of TCP/IP
when sending very small packets, such as single
characters typed at a keyboard. For larger size
packets, the importance of TCP/IP header
compression diminishes, as the importance of
compression of the actual data that is sent by

the transport protocol (e.g. KP) increases.

Sometimes the transport protocol is only
used to transfer a file. (Consider for instance
the data TCP connection during an FTP file
transfer.) In that case, almost any data compres-
sion method that can operate on the data “on the
fly” will work. All variants of Ziv-Lempel
compression wiU work in this situation. When
the end of the tie is reached, the encoder wiIl
perform the “flush’ operation at least partially.
It will encode the character string that it is
currently holding and emit its codeword to the
output. However, it is not necessary to emit any
special flush codeword, sina: this was the last
compressed data that was sent on the transport
connection. The transport connection is sup
posedly terminated shortly afterwards, so a spe-
cial jlush codeword would serve no purpose
here.

Another situation that resembles a file
transfer, is the transfer of electronic mail (an
SMTP session for instance.) However, here
there are interactive elements. In the case of
STMP, for example, there is an initial dialogue
between the sender and receiver of the message.
When LZW or a similar method is used to
compress the data, the decoder will always lag
one codeword behind the encoder. This makes
it necessary to perform the flush operation after
each SMTP command and after each mail mes-
sage. Consider what would otherwise happen.
Most SMTP mail transfer agents will operate in
stop-and-wait mode. They will send a command
and they will not proceed until a response has
been received Using standard LZW (non-
flushing) compression, however, the SMTP
server will not receive the complete command
because its LZW decoder has not received the
last codeword of the compressed command. The
SMTP server will not do anything until it has
received a complete command, but the mail
transfer agent will not do anything either,
because it believes that its Latest command has
been fully transmitted. A deadlock has
occuKed.

The same problem will arise when
transmitting any kind of interactive data. An
example application would be characters or
lines of characters transmitted in transport proto-
col packets. (E.g. Telnet running in remote echo
and local echo mode, respectively.) Even if
there may not always be a deadlock, the lag of
the LZW decoder is likely to cause some incon-
venient effects. For instance, when using remote

78

echo, the echoed characters might not be
received until several other characters have been
typed*

A reasonable general solution to avoid the
problem and possible deadlock described above,
would be to perform the flush operation when-
ever the application program passes data for
transmission to the layer below it, In order to
keep software modules layered, it would be con-
sidered a good thing if the application program
was as independent of compression as possible,
and vice versa. Unless otherwise informed, the
compression layer should assume that any data
buffers are for immediate processing by the
remote peer. Every buffer sent to the transport
level would be “flushed.” This would not be
necessary when transferring files, or when doing
other non-interactive operations, but the over-
head would only be two codewords per data
buffer. (The codeword of the last string, and the
actual j&A codeword) It would be possible to
have the application program explicitly tell the
encoder when to flush, but that could introduce
complicated intemctions between protocol
layers.

Incidentally, suppose that Telnet is being
run in remote echo mode. To echo each charac-
ter after it has been typed would indeed be
necessary to perform the flush operation for
each character. Since the flush operation always
generates two codewords, this would cause the
output stream to be between 125% and 300%
larger (for 9 to 16 bit wide codewords) than the
input stream. This negative compression is of
course not caused by something inherent in the
actual LZW algorithm, but merely by the need
to immediately flush any data. There are how-
ever situations when LZW will generate nega-
tive compression, independently of any flush-
ing.’

5. An experimental implementation

The author implemented a data compres-
sion layer on top of TCP for the KA9Q Internet
Package -871 for MS/DOS. The implemen-
tation is based upon the original LZW
specification but with the addition of the flush

l An example of this is when cxxqressing a tie that
has already been compressed. To avoid this problem it
would be necessary for the application to detect that its
data has already been compressed and to disable any
further corqxession by lower layers.

codeword for the flush operation. Another
difference is that variable size codewords are
used. The application program is able to specify
the maximum size of the codewords, which
must be in the range of 9 and 16. The encoder
begins with 9 bit codewords and increases the
size as needed. When the limit is reached, a
special dear codeword is emitted. Both the
encoder and decoder will then clear their dic-
tionaries and revert to 9 bit wide codewords.
These mechanisms for handling variable size
codewords, and for handling the exhaustion of
the dictionary are very similar to the mechan-
isms used by the Lzw variant in the GIF graph-
ics format [GIF87].

A reason why one would like to limit the
maximum size of the codewords is to avoid pos-
sible memory limitations at either peer. The
KA9Q program, for instance, does not leave
much spare memory. The experimental imple-
mentation provides a tradeoff between memory
usage and speed. When minimizing the memory
usage, each dictionary entry uses three bytes.
This is accomplished by observing that each
codeword can be expressed as the string of
another codeword followed by a single charac-
ter. Thus, out of the three bytes, two are used as
a pointer to a previous codeword, and the third
rep=sents the character that should be appended
to the string of the previous codeword.

Still, when using only three bytes per
entry, 16 bit codewords would require a diction-
ary size of 192 kbyte. If compression is used in
both directions, the memory requirements would
be doubled. To prevent accidental memory
exhaustion, the encoder and decoder exchange
their recommended maximum codeword size
values. The smallest of the two values is used
by both parties.

The deader can construct its dictionary
so that it can quickly look up a string by its
codeword. If each entry only consists of one
character and a pointer to another codeword, the
decoder will get the string in reverse order. But
the decoding will still be fast. The encoder, on
the other hand, must search its dictionary to see
if a given string is already in the dictionary.
This is a very time consuming process when the
dictionary grows in size. A way of avoiding this
problem would be to restrict the size of the
codewords to a size that generates reasonably
small dictionaries, such as 12 bits. It has also
been argued that using codewords larger than 12
bits has mioimal impact on the efficiency of the

79

compression. English ASCII text will usually
give a compression ratio of 2:l already at small
codeword sizes.

The dictionary can be constructed in
different ways to make searching for a string
faster. The experimental implementation pro-
vides a “fast” mode where a hashing mechanism
is used to speed up searching. Dictionary entries
do now have to be kept as a linked list. This
causes each entry to be 5 bytes, a relatively
significant increase in memory usage.

The actual performance of the KABQ
LZW implementation depends mainly on the
type of hardware. the program is being run on.
Using an 8 MHz AT clone there were no prob-
lems with keeping a 1200 baud SLIP link
saturated when compressing with up to 12 bit
wide codewords using either “fast” or “compact”
modes of operation.

6. The V.42bis compression standard

The CCITT has published a recommended
data compression standard called V.42bis
[CCITI90]. It is being implemented as an
integral part of many telephone modems. The
compression method is in essence LZW, and
one is assumed to run it on top of an error free
communications link. This is usually achieved
on telephone modems by using the V.42 error
correction protocol. But V.42bis may also be
run on top of some other protocol that provides
an error free link, such as TCP.

V.42bis has many similarities with the
LZW implementation in the KA9Q package
described above. It also uses variable size code-
words and a special Jlush codeword for the flush
operation.

In V.42bis, the flush codeword is always
added to the output buffer that is being flushed’
and then the buffer is padded into an integer
number of bytes. This is not entirely necessary,
however. The LZW implementation for the
KABQ package uses the flush codeword to pad
the output buffer into an integer number of
bytes. This means that the part of the flush
codeword will be in one output buffer and the
remainder will be at the beginning of the next
output buffer. This works because the Push
codeword does not need to be processed by the
decoder until there are some more codewords to
decode. By p,add.ing with “blank” bits, V.42bis
wastes up to ‘7 bits (or 3.5 bits on average) per
output buffer when compared to the KA9Q

implementation.

CCITT spec*cations follow the tradition
of trying only to specify the operation of the
encoder. The decoder should just perform the
logical inverse of the encoder. In trying to keep
up with this tradition, the CCITT had to modify
the way the decoder is assumed to handle the
receipt of codewords that it does not yet know
about. As described previously, if the input
stream consists of the string “ccccc”, a standard
LZW encoder will encode it as the codewords
for “c”, “cc”, and “cc” followed by the flush
codeword. The first “cc” will not be in the dic-
tionary of the decoder, but it knows that this
can only happen for repeated character strings.
The decoder can find out which string the unk-
nown codeword must represent by using a rela-
tion between consecutive codewords that holds
true in this case. V.42bi.s, however, differs from
the original LZW specification in that the
encoder will refrain from emitting a codeword
that is identical to the latest codeword it added
to its dictionary. (See p. 27 in the V.42bis
specification for the exact algorithm.) In this
example, the V.42bi.s encoder will emit the
codewords for “c”, “co, “cc” and “c” followed
by the flush codeword. This is one codeword
more than what would be needed by systems
following the original LZW specification (such
as the KA9Q implementation.) In many cases,
however, both V.42bis and original LZW pro-
duce the same amount of codewords for a given
string of repeated characters.

There is a provision in V.42bi.s for the
application program to temporarily disable
compression. This is very useful when the flush
operation would otherwise have to be performed
after every single character. (E.g., when
transmitting keyboard input in remote echo or
full duplex mode.) Without this facility, those
cases could lead to a quadrupling of the bit
stream, as mentioned previously.

The V.42bi.s specifica.tion includes the
data structure, called trie [Krruth73], to be used
in the dictionary by the encoder. The trie allows
for efficient dictionary lookups by using pointers
to “child”, “parent” and “sibling” codewords.
This causes each dictionary entry to use at least
7 bytes. When the dictionary is full, it is not
cleared as in GIF or in the KA9Q implementa-
tion2, but rather pruned in a circular fashion.
The pruning algorithm begins with the oldest
codewords, and deletes those that have no chil-
dren or siblings. The result is very similar to a

80

Least Recently Used algorithm.

7. Alternative algorithms

LZW derived algorithms are very popular,
at least until recently. The LZW algorithm has
however recently been patented by Unisys.
LZW implementations also risk infringement of
the Miller and Wegman patent which is held by
IBM. (Miller and Wegman discovered LZW
independently from Welch mer84].) As far as
the author knows, neither of these patents have
yet been tried in court

There m several other dictionary algo-
rithms based on the original ZivLempel
methods. Although they may not be as fast or
efficient as LZW, implementations of these
algorithms do not yet risk patent infringement.
There are also several promising statistical
compression methods, in particular PPMC
woffat88]. Although efficient, statistical
compression methods often require lots of pro-
cessing. PPMC seems to be a good compromise
and it has been shown to perform well on
medium range workstations. [Cate91]

8. Conclusion

Data compression is a viable method for
increasing the throughput of a communications
link. Care must be taken when choosing a suit-
able implementation of an algorithm. The
implementation may otherwise only decrease the
amount of data transferred while imposing
delays that lower the throughput. Special con-
sideration must be taken when choosing an
algorithm for compressing interactive traffic. An
LZW implementation for interactive TCP data
in the KA9Q Internet package has been
described. V.42bis solves some of the draw-
backs of the KA9Q implementation, but has also
been shown to use less efficient coding than
KA9Q.

9. References

Bell89 Bell, T., et al. “Modeling for text
compression. ’ ’ ACM Computing Sur-
veys, Vol. 21, No. 4, December 1989.

Cate91 Cate, V., Gross, T. “Combining the
Concepts of Compression and Caching
for a Two-Level Filesystem.” School

2 V.42bis does provide a clear codeword, however.
But its use is left undefkd.

of Computer Science, Carnegie Mel-
lon University, 1991.

CCITI’90 “CCITI’ Recommendation Data

GIF87

Jacobs88

Jacobs90

Karn87

Knuth73

Miller84

Moffat88

Storer88

Welch84

Ziv77

Ziv78

Compression procedures for Data Cir-
cuit Terminating Equipment (DCE)
using Error Correction Procedures.”
VoL WI, Rec. V.42bis, Geneva 1990.

“GE Graphics Jnterchange Format
(tm.)” CompuServe Inc, June 1987.

Jacobson, V. “Congestion Avoidance
and Control.” Proceedings of
Sigcomm ‘88. ACM, August 1988.

Jacobson, V. “Compressing TCP/IP
Headers for Low-Speed Serial Links.”
RFC-1144, February 1990.

Kam, P . “The KA9Q I n t e r n e t
(TCPD?) P a c k a g e : A P r o g r e s s
Report” 6th Computer Networking
Conference. ARRL, August 1987.

Knuth, DE. “The Art of Computer
Programming.” Vol. 2, “Sorting and
Searching.” Addison Wesley, Read-
ing, MA, 1973.

Miller, V.S,, Wegman, MN “Vatia-
tions on a theme by Ziv and Lem-
pel ” In “Combinatorial Algorithms
on *Words? (Apostolico, A., Gal& Z.,
editors) NATO ASZ series, Vol. F12.
Springer-Verlag, Berlin 1984.

Moffat, A. “A Note on the PPM Data
Compression Scheme.” 7’ecIz. Report
88/7, Dept. of Computer Science,
University of Melbourne, July 1988.

Storer, J.A. “Data Compression:
Methods and Theory.” Computer Sci-
ence Press, Rockville, MD, 1988.

Welch, T. A “Technique for High-
Performance Data Compression.”
IEEE Computer, VoL 17, NO. 6, June
1984.

Ziv, J., LempeL, A. “A Universal
Algorithm for Sequential Data
Compression.” IEEE Trans. In!.
Theory, Vol. IT-23, No. 3, May 1977.

Ziv, J., Lempel, A. “Compression of
Individual Sequences via Variable-
Rate Coding.” IEEE Trans. In$
meory, Vol. IT-24, No. 5, September
1978.

