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Abstract

Knowledge of the statistics of a source bit stream is required when selecting the most
efficient statistical data compression techniques and designing the best codes. This paper presents
a program called Statistical Analysis of Files (STAF) that analyzes and supplies the statistics on
such bit streams. The two key statistics are the entropy (a measure of information content) and
thefiequency  of occurrence table. The entropy measure is used is establishing the compression
limit for statistical techniques, while the frequency of occurrence is vital in the designing of optimal
variable-length codes such as Huffman and Shannon-Fano.  Other statistics analyzed for optimal
code compression techniques are run-length encoding, half-byte packing, and diatomic character
encoding. In the entropy report, the statistical techniques are compared with a popular adaptive
nonstatistical dictionary encoding algorithm, the IZW technique, to give a comparison with other
methods of lossless  compression on a set of benchmark files.

1, INTRODUCTION

Transmission of information requires symbols (data). If the data representation of
information is compact (i.e., no redundancy is present) the information can be transferred faster
than with redundant data, given the same data transfer rate, expressed in bits per second (bps).
Thus, every bit of information is transferrable to others, at the right price. A Stocks and Bonds
newspaper can be very expensive to send, but the price is worth it -to a stockbroker. Similarly,
last night’s sports scores are very important to the sports fan, but for someone who dislikes sports,
the information is useless.

Information can be sent by a variety of methods, and each method has its own benefits and
pitfalls. For a given probability of error, a shorter transmission would be less susceptible to error
than its longer corresponding uncrunched source. Nevertheless, the shorter bit stream is more
sensitive to erz~rs, such that an error of one bit could destroy the whole information, whereas an
error in the uncompressed bit stream could likely be corrected. Which then, is the best method?
Clearly, the best nKthod is the fastest, most perfect method, though which one is best for a
particular type of tiormation  is the $64M  question. Data compression can be employed to reduce
the Length of the data bit stream, without losing any of the i&rmation  itself. Most data is actually
very repetitive (redundant), and can be “crunched” so as to remove the repetitiveness. A good
elementary example of data compression is secretarial short-hand. People who know the code can
transfer information quickly from a spoken format into a written format. Then at a more
convenient time, the code can be expanded into a normal textual format. Elimination of
repetitiveness, or redundancy, then is an improvement to inf-tion transmission.
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Information exchange fills each of our days. If it can be improved in a manner that does
not hinder our understanding, it should be done. Information can be represented in a variety of
ways, such as pictures, speech, books, television, and computer files. All of these formats, (and
many others) require a transfer from a source, to a destination. Thus, the transfer is what can be
improved, and just about everyone can appropriate it.

A program designed to analyze any bit stream and provide the necessary statisti
information for code design has recently been described puKi91].  The Statistical Analysis of
Files (STAF) program provides the user with a portrait of a file’s statistics. Then, on the basis of
the report, the user can then decide which type of data compression would1 be the most suitable for
their particular piece of data. The STAF program generates two types (of reports: a short and a
full-length report. The short report is a one or two page report containing the following two
segments: (i) the entropy analysis, and (ii) the sorted frequency of occurrence. The full report
gives the following results: (i) entropy analysis, (ii) a full character frequency report, (iii) the half-
byte, (iv) run-length en.coding,  and (v) diatomic character analyses.

3. DESCRIPTION OF PROGRAM MODULES

The STAF computer program has five modules. The two types of reports (short and full:)
are similar in their scope: The short report gives the entropy analysis and the sorted character
frequency chart, while the long report gives additional half-byte analysis, repwted character string
analysis, diatomic analysis, and the critical ASCII frequency of occurrence; chart.

3.1 Entropy  Report Module

The entropy analysis module is divided into an uncompressed and compressed section.
The uncompressed ancrlysis  is the most basic part of the program. Firstly,, it gives the count of the
total number of characters in the file, which is also converted into bits. Next the number of distinct
characters in the file is printed. Finally, the source, entropy, H,, is calculated [Kins9lc]. The
compressed analysis gives six important statistics useful for determining whether a statistical
compression method is feasible. The statistics are described next.

Theoretical Statistical Compression

Let us consider a source containing 200 characters: 100 Es, 50 each of T and A. The
entropy is calculated as

Ha =- pi &Pi (3. f)

= - ~=~.5010g20.50  + 2 x 0.251og20.25)
= 1.5 bits/character
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where pi is the probability of occurrence of each symbol in the source, and m is the number of
symbols in the source text or alphabet (hereafter referred to as source).

The ultimate theoretical statistical compression (TSC)  is given as the barrier which every
statistical code seeks to equal, but is rarely, if ever achieved. The ultimate TSC percentage, Up,  is
calculatedfrom

(3.2)

8
= 81.25 %

where sa is the number of bits used to represent a character (normally eight, according to ASCII
convention), and Ha is the source code entropy. Notice for this example we have a perfect code,
one that is statistically as concise as possible. But in normal practice, a three symbol code is next
to useless, and a larger and undoubtedly
set.

less perfect code would be created with a larger symbol

Theoretical Variable  Length Cbdewords

While the theoretical statistical
theoretical variable-length codes entropy

compression, U, is the standard to measure up to, the
(V’) is the estimate of the entropy when variable length

coding is used. While it would be necessary to actually construct the Shannon-Fano or Huffman
codes to actually know the number of bits needed to encode each symbol, the estimated number of
bits, & required to encode a symbol with probability Of pi is

& = r log2 pi 1
The theoretical variable length code  entropy, VH, can be calculated f&m

m

VH =--c PXi i
i=l

(3.4)

In practice, the actual S-F or Huffman code entropy would approach, but never be smaller
than uH( such that

UH I; S-F~,orHuff’  s VH (2.8)

is always true.

Tk Shannon-Fans  Compression Technique

The Shannon-Fano (S-F) coding module calculates a possible S-F code and the code
entropy. A separate program was developed to calculates a number of S-F codes using a number
of different heuristics, but one heuristic consistently created the best code every time, so the STAF
program uses only this heuristic. Once the entropy is calculated, it is a simple matter to calculate
the length of a file c&d in this manner, and the percentage compression that may be gained with
this method
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The heuristic used to calculate the S-F tree is this: Starting from the top down, the whole
array containing the sorted character frequency from 0 to the number of distinct characters
(symbols) is scanned,, and split in half as close as possible to the middle of the frequency. The
program splits the top half, (with fewer characters, but appearing more often) and gives each
character in this section a prefix of “zero”, and the bottom half a “one.” Now the array is split into
two approximately equivalent parts (according  to frequency), and the same heuristic for splitting
the initial may in half is called again, recursively, to split the top, and bottom halves of the array,
and add the next character in the S-F code, until all the codes have been generated.

In the routine that actually finds the middle of the array, a check is added that has been
coined “Heat-Seeking; Capability”. Just as a heat-seeking missile or torpedo searches for a source
of heat as its target, so this “Find the middle of the array” routine seeks the: closest point to the
middle. The less advanced “Find the Middle” heuristics checks the array, returning the point
exactly in the middle or earlier, while the heat seeking capability checks on both sides of the exact
middle point of the array, and returns the closest point, whether it be on the top, or bottom side of
the array. The old method can be compared to the way contestants had to guess the prices of items
on the popular T.V. game show “The Price Is Right”, where the winning answer was “The
contestant closest to the actual retail price, but not over is...“. This method seems a little unfair
because the winner was not necessarily the one who was the closest, but the closest one who
guessed underneath the actual price. The “Heat-Seeking” capability eliminates the disparity, and
returns the split closest to the middle.

The Shannon-Fano codes are pleasing to display and analyze, since it is very apparent that
the code is self-separating. Huffman codes (explained next) are more complicated in creation, and
this results in a code that is not as obviously self separating.

The HufSman  Compression Technique

The Huffman  codes are created using a single heuristic. Just as in the S-F module, a
separate program was developed which coded a number of Huffman codes and compared them.
For each file tested, the same heuristic gave the best result. Each code had the same entropy, but
one heuristic produced codes where the maximum code length was less than others. This is the
heuristic that has been implemented in the program. The Huffman code entropy is calculated, and
this appears in the entropy report module.

Briefly, Huffman codes are created by fusion wuff52],  [Kins9la].  Shannon-Fano codes
are created by splitting an array into successive halves, quarters, (etc... (called “top-down
splitting”), while Huffman codes are created by repeatedly (recursively) merging the two symbols
with the smallest frequency, creating a new entry with the combined frequency  (called “bottom-up
binary fusing”) and adding this new node to the list/array from which the two symbols were
located. The two individual symbols are also removed from the list, since they are now
represented by a single combined (and thus higher) frequency.

This process Icontinues,  always subtracting two nodes from the list, and merging their
composite probability back to the list, until one large binary tree is formed. The Huffman code can
then be read from the: tree, starting from its corresponding leaf going up through the branches to
the root, where each step up “left” is assigned a “one”, and each step up “right” is assigned a
“zero”. A more detailed description, with examples of both Huffman and S-F codes is given in
[Kins9la].

The LZW Compression Technique

This algorithm is a non-statistical dictionary algorithm, and thus it is possible (and likely)



that coding in this case could exceed the symbol based entropy, Ha. Currently the only available
statistics are those compiled by actually running the source bit stream through this algorithm. The
technique creates a dictionary, and this heuristic clears the dictionary when it fills up. Since the
figures included in the entropy module are for comparison against the statistical techniques, a
detailed description of the algcxithm  can be found in [KiGr91],  [Kins9lb],  welc84],  [Stor88].

3.2 Frequency Report Module

This second module in the STAF program provides the user with two different types of
charts: (i) standard, and (ii) sorted charts. The full length report calls for both charts, while the
short report calls far only the sort& chart.

Sorted  Frequency Chart

The sorted frequency chart looks at the whole ftie to be analyzed, and sorts the symbols
appearing in the source file in a descending order. Characters in the normal ASCII character set
which do not appear in the file are not shown, for clarity. The chart shows each character, the
integer count of the number of times it appears in the source, and the frequency or percentage, pi,
of the file that is that specific character. A typical text file’s sorted chart would probably begin with
<Space>, followed probably by <CR> (carriage return) and then perhaps the frequent letters
E,T,A,  and so on. Recall that the Shannon-Fano and HufW codes are constructed on the basis
of this chart.

Stan&d  Frequency Chart

The Standard Frequency Chart prints the entire 256character  ASCII character set each with
its corresponding count and frequency. This chart would be useful to show how the different
characters are used, and which, if any blocks of characters are either used extensively or not at all.
A typical Analog-to-Digital converter supplying 8-bit  data could create data where this chart or a
graphical representation of it could be useful in conjunction with another type of data compression
using patterns derived from inspection of the chart. Coding could take advantage of “clusters” of
certain symbols being used more often, and codes could be calculated accordingly.

3.3 Half-Byte Encoding Module

Certain types of data contain extensive numerical figures. Business charts, spreadsheets,
scientifk measurements (or even the sorted frequency charts the STAF program generates) contain
many numerical figures which could be compressed. Normally, a character byte takes eight-bits
(Sa), but if the compression algorithm anticipates a numerical string, a four-bit code could be
utilized to ede the digits zero to nine, cmting a cumpressim ratio of nearly 509L

This four-bit code means 16 characters can be encoded this way, so that after the ten digits
are assigned, there are six extra unused codes, which could be classified as “numerical“ and
encoded as such. For example, a phone number (1-800-555-1212)  contains 14 characters,
including the three hyphens. This could be encoded into nine characters (A starting control byte,
length of string, and the 14 nibbles) for a 64% saving. For longer numerical strings, a savings
approaching 50% could be achieved. Typically a compression program would assign the six extra
characters to be ones that normally show up in association with numbers. (“$*/-,.“).  Thus, the
following types of strings would be encodable: l-800-668-1234, 1984,1988,1990-91,08/07/91-
s/01/68 $***  1 234 56 and 3-2212-01176-3284. For highly statistical and numerical files, a
comprkion of ;p & 5&b could be attained with half-byte encoding.
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3.4 Run-Length Encoding Module

Run-length encoding (RLE) is a very simple technique, useful for highly repetitive
characters strings. The first type of RLE is when the encoder anticipates a number of blanks.
These can be replacedl  with two characters: a special character, and the count, n, of the number of
blanks. Thus, in a chart or graph that has 10 blanks in a row, they could be encrypted as a special
control signal character, and then the number ten, to signify “10 blanks in a row.” An
extrapolation of this technique is a three character c&e used to represent repeated characters. For
example, if the encoder encounters six Rs, they could be encrypted as a [special character1  the
o&inal character1 replated 6 times].

Normally it is {quite  rare to have more than two or three characters repeated in a row, so this
technique would not be a very fruitful one. Multiple spaces however, are a little more common,
and are prime candidates for compression. This module only counts repeated strings of three or
more characters, beclause  compression savings only start with repetitions of more than three
characters.

3.5 Diatomic Analysis Module

The diatomic  compression technique is another very specific technique, which takes certain
strings of characters and replaces them with a shorter code. In this case, the program looks for all
pairs of characters, and replaces the most common pairs with a single character code. This results
in a compression percentage of 5096, though it probably would not be possible because of the
limited number of available characters to signify pairs of characters. Thus only the most common
pairs would be encrypted. The most common pairs in the english language are E-, .-T, TH, -A,
and S- [Held87].

4. EXPERIMENTAL RESULTS

Experiments were performed on a
chosen for benchmarking the results. The
computer, and output sent to an ASCII fil
program created on each of the files.

variety of files, most for the IBM PC. The files were
STAF program was run on a 33-M&  IBM Compatible
.e on disk. Table 4.1 summarizes the output the STAF

4 . 1  Benchmark Files Description

README.DOC  - This text file contains mostly upper and lowercase letters, with a
sprinkling of a few numbers. It is Borland’s Turbo C++ help file containing the last minute
changes to their product. The ftie contains 82 distinct characters, and would represent a typical
word processor letter or document.

AMIHELP2HLP  - The Windows 3.0 HELP reference file for the Desktop Publishing
program AMI, available to the PC user when <Fl> is pressed. The file consists of mostly
ASCII text, but contains a generous sprinkling of control and non-printable charactersnecessary
for Windows to be ab1.e to interpret it,

WORKS.EXE - One of two executable files tested. This is the .EXE  code from the
popular Word-Processing/DataBase/SpreadsheeKommunications  software package from
Microsoft. This fits in the category of non-windows applications.

MILLEBV4.EXE  - Another executable file, this one is an implementation of the popular
card game Mille Barnes, A good mouse-based, windowed (Not MS ‘Windows) program with
excellent graphics.



Table 4.1 STAF analvsis  of Benchmark Files
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FILE
Entropy! Theoretical Shannoxa-Fan0 Eiman LZW
Compr  Len / var. Length coding coding coding
Compr  PC! COdeS

READMEDOC 4.825 bits/char 5.362 4.92168 4.8565 1 3.904
(16203 bytes) 10861 9836
(82 symbds)

!J773  bytes
39.7 % 32.97 9b 38.479 % 39.294% 51.194 96

~1HELP2.HLP 4.898 bits/char 5.337 4.94101 4.93135 2.870
(279655 bytes) 171232 bytes 186561 172722 172384 100329
(251  symbols) 38.77% 33.289 % 38.237% 38.358% 64.124 96

WORKS.EXE 7.409 bit!#char 7.956 7.45306 7.43783 7.822
(381n6  bytes) 353556 bytes 379676 355674 354947 373275
(256 symbols) 7.392% 0.55% 6.837% 7.027 96 2.227%

MILLEBV4.EXE 7.142 bits/char 7.697 7.23544 7.16612 5.934
(21- NW 193254 bytes 208250 195768 193892 160549
(256 symbols) 10.719% 3.791% 9.557 % 10.424 % 25.828%

TIGERBMP 1.065 bits/char 1.292 1.23237 1.23224 0.153
(212086bytes) 28246 bytes 34246 bytes 32671 bytes 32667 bytes 4069 bytes
(55 symbols) 86.682% 83.853 % 84.595 96 84.597 96 98.081%

FITPCM 6.469 bits/char 17997 6.587 6.4998 6.279
(20556 bytes) 16622 bytes 7.004 bytes 16924 bytes 16701 bytes 16134 bytes
(202 symbols) 19.14% 12.45 % 17.67 96 18.75 % 21.51 %

NUMBERS-IXT 3.733 bits/char 4.375 3.78104 3.75881 2.534
(16738  bytes) 7810 bytes 9155 bytes 7910 bytes 7864 byes 5302 bytes
(226 chars) 53.342 96 45.307 96 52.737 96 53.015% 68.324 96

SHORT.TXl- 4.137 bits/char 4.582 4.1868 4.1656 5.038
(894 bytes) 463 by&es 512 bytes 467 bytes 465 bytes 563 bytes
(34 symbds) 48.294% 42.729 96 47.679 96 47.945 % 37.025%

V5

TIGER.BMP  - A very simple Windows 3.0 Paintbrush drawing of a cat’s face. Although
&is may not be as detailed ti a typical drawing, it illustrates the waste that can be eliminated from
every drawing.

FI’I’.PCM - A digital voice sample of a person speaking the word “FIT.” The sample is
stored in pulse code modulation (PCM) form. This sample bit stream would appear random,
unless displayed in graphical  PCM format.

NUhdBERS.TXT - The STAF program creates reports which contain many numbers. The
ffe ~~ERS.TXT  is actually the STAF qort for the README.DOC ftie.  The sample of this
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file can be created by running STAF on README.DOC,  and then running STAF on the output file
READMELST2,  after fmt renaming it to a different  name.

SHORTTXT  - A shorter memo, created to illustrate Huffman and S-F codes. It contains
roughly 30 distinct symbols, and is used to illustrate these two types of coding simply.

4.2 Observations

The specific implementation of the Huffman code is better than the: S-F code in every
instance of the benchmarks that were tested. From the selected flies,  it appears that the more
symbols in tlx source bit stream, the smaller the difference becomes. The two EXE ftie (WORKS,
h4ILLEBV4),  each using all 256 &bit codes exhibit differences in code entropy of 0.015 and 0.07
bits/character. The two text files on the other hand (READMEDOC  (82 symbols) and
NUMBERSTXT  (226 symbols) exhibit differences in code entropy of O&65  and 0.02. The
difference decreases in proportion to the number of symbols in the bit stream. The
AMIHELP2.HLP file also supports this observation: It too has more than 250 symbols in the file,
and the Huffman and S-F difference in entropy is approximately 0.01.

The TNGER.BMP  picture is quite simple, and comes in with an entropy of a resounding
1.065 bits/character. The Huffman and S-F code entropy is virtually identical, though the S-F
entropy is still larger.

The file SHORTTXT  is a small paragraph typed in from a book, using lowercase letters
only. Containing 30 characters, it is a short memo, illustrating clearly Hu&an  and S-F codes that
can easily be reconstructed. The LZW (37.%)  algorithm does not appear to perform as efficiently
as the variable length coding routines (48%). This is due to the brevity of the file. If the fik
becomes any larger, the LZW  will perform better, since it will be able to find more redundancy and
patterns in the text.

The LZW compression algorithm is non-statistical, and thus its statistics can really only be
used for comparison. The LZW algorithm is better for each file by approximately 15.20% except
for the WORKSEXE  program, where the LZW routine makes a remarkably poor showing.
Typical LZW gives compressions of 5060%  for normal text fties, and only 20-30%  for more
evenly (or random) distributed probabilities like the EXE files and digitized speech. The LZW
routine compresses and amazing 98% on the TIGER.BMP picture, though the picture is a
relatively simple, &color diagram. Nevertheless, all BMP stored format pictures can be
compressed - some more than others.

5. CONCLUSIONS

This paper presents a statistical analysis of files computer program developed to design
optimal statistical codes for data compression. A set of benchmark files has been selected to test
relative merits of the Shannon-Fan0  (S-F), Huffman,  and Lempel-Ziv-Welch (LZW) optimal
codes. Entropy calculations and frequency of occurrence help in assessing the best statistical
techniques that can be applied to the given data stream. The frequency of occurrence is used to
design optimal Huffman and S-F codes for that stream. The optimal codes are designed on a set of
heuristics also evaluated in the study. The specific implementation of the Huffman code appears to
better  than the optimal S-F code for all the fties tested. Our implementation of the LZW algorithm
is also better than Huffman by 1520%.  The LZW gives compressions of 50-60%  for normal text
fties,  and 2040%  for executable files. This statistical analysis of files program could be used as a
tool in designing and implementing compression algorithms in future packet radio BBSs  and other
data transfer systems.
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