
Proc. 1994 Digital Communications Conference

FAST CELP ALGORITHMAND IMPLEMENTATION
FORSPEECHCOMPRESSION

A. hngi, VE4ARh4, W Grieder, VE4WSG, and M? Kinmel; VE4WK

Department of Electrical and Computer Engineering
and Telecommunications Research Laboratories

University of Manitoba
Winnipeg, Manitoba, Canada R3T 5V6

Tel.: (204) 474-6992; Fax: (204) 2750261
eMail: kinsner@ee.umanitoba.ca

ABSTRACT

This paper describes a fast algorithm and
implementation of code excited linear predictive
(CELP) speech coding. It presents principles of the
algorithm, including (i) fast conversion of line spectrum
pair parameters to linear predictive coding parameters,
and (ii) fast searches of the parameters of adaptive and
stochastic codebooks. The algorithm can be readily
used for speech compression applications, such as on (i)
high quality low-bit rate speech transmission in point-
to-point or store-and-forward (network based) mode,
and (ii) efficient speech storage in speech recording or
multimedia databases. The implementation performs in
real-time and near real-time on various platforms,
including an IBM-PC AT equipped with a TMS32OC30
module, an IBM PC 486, a SUN Sparcstation 2, a SUN
Sparcstation 5, and an IBM Power PC (Power 590).

l. INTRODUCTION

1.1. Why is CELP Useful ?
Obtaining efficient representation of speech at low bit

rates for communication or storage has been a problem
of considerable importance, because of technical as well
as economical requirements. Telephone-quality digital
speech in a pulse code modulation (PCM) form requires
a 64 kbits/s rate which cannot be transmitted in real time
through 6 kHz and 30 kHz channel capacities of HF and
VHF bands, respectively. Voice mail and multimedia
employ speech storage, demanding efficient ways of
storing speech, since one minute of PCM speech already
requires 480 kbytes of storage space. Even if the
channel can accommodate real-time speech, speech
compression allows more communication connections
to share the precious channel. Similarly, speech
compression allows more speech messages to be stored
in the storage of the same size.

This paper describes a speech compression technique
for those purposes, called code-excited linear predictive
(CELP) coding [Atal86] [JlaJS93], which obtains bit
rates of as low as 4.8 kbits/s, giving a compression ratio
of up to 13: 1 [CaTW90]. Although this rate is higher
than a 2.4 kbits/s linear predictive coding (LPC), speech
compressed by CELP has quality, naturalness, and
speaker recognizability, which are missing from the
LPC.

The importance of CELP goes beyond its quality vs.
bit-rate performance, as it *provides a generic structure
for future generation of’ perceptual speech coders
[JaJS93]. All speech compression techniques have been
based on two intrinsic operations: removal of
redundancy and removal of irrelevancy. The first
operation uses prediction and/or transforms to remove
redundant data, thus reducing the bit rates. The second
operation further reduces the bit rates through
quantization of(i) the time components of the prediction
error or (ii) the transform coefficients, allowing
mathematically non-zero but imperceptible
reconstruction error or distortion.

If further compression iIs still required, the coder
minimizes the error perceptibility by exploiting masking
properties of human speech perception. To certain
extent, the speech energy itself perceptually masks the
distortion. Thus the same energy levels of distortion
have different perceptual effect if applied to speech
signals with different energy levels. This approach
promises a new level of highier quality and lower bit rate
speech compression [JaJS93]. Coders that minimize
perceptual distortion (such as CELP) are called
perceptual coders.

One novelty of CELP is in incorporating the masking
property in a working, practical scheme. Such
incorporation is non trivial blecause perceptual distortion
measures lack tractable means that have often been
available in the traditional distortion energy measure.

97

The CELP solution to this problem is by using an
analysis-by-synthesis approach, where the perceptual
distortion is literally measured. CELP then exploits the
computational structure, resulting in a sophisticated,
practical compression technique. Clearly, the
computational cost is very high.

1.2. Conceptual CELP

As shown in Fig. 1, a conceptual CELP structure
[ScAt85] consists of:
a. two predictors (pitch and spectral predictor filters) to

remove redundancy caused by long and short term
correlations among speech samples, respectively;
and

b. a close-loop, perceptual vector quantizer utilizing a
codebook to remove irrelevancy indirectly from the
time components of the prediction error.

The codebook stores random (stochastic) signals as
prototypes of excitation signals for the two predictor
filters. Furthermore, a perceptual weighting filter
ensures that mean-square error measurement reflects the
perceptual error measurement.

The CELP compressed speech then consists of:
a. a set of spectral predictor parameters;
b. a set of pitch predictor parameters; and
c. codebook (entry and gain) parameters.
It is these CELP parameters than can be transmitted or
stored at rates as low as 4.8 kbiWs.

The speech compression algorithm begins by
obtaining the predictor parameters, and then searching
for codebook parameters corresponding to excitation
prototype that minimizes the perceptual error. The
CELP decompressor uses the codebook parameters to
produce the excitation signal, exciting the cascade of

pitch and spectral f i l ters, result ing with the
decompressed speech.

The selection of the predictors and the quantizer is by
no means arbitrary. They match elements of a model of
human speech production system [Lang92]. The model
consists of an excitation source and a vocal tract.
During voiced speech articulations, the excitation source
produces quasi periodic pulses which excite the vocal
tract. The pulses are subjected to resonance and anti-
resonance processes in the vocal tract according to the
changes in the vocal tract shape over time, resulting in
audible and meaningful speech. Similar processes take
place during stop and fricative articulations. However,
the excitation source should produce noise-like
excitations instead. In matching the model, CELP uses
the spectral predictor filter to perform vocal tract
function. The pitch predictor filter (usually a one-tap,
all-pole filter) ensures the quasi-periodicity of the
spectral filter excitation. In this cascaded filter
structure, it is known that voiced speech signals have
excitations of Gaussian distribution. Thus the codebook
members represent such excitations. It also
accommodates excitation for stops and fricatives. The
fact that the CELP structure serves both signal
compression principles (i .e. , redundancy and
irrelevancy removals) and speech production model
(i.e., an articulation source and vocal tract) is the reason
for the CELP highly successful performance.

1.3. Implementation Problem

Despite its concept maturity, real-time CELP
implementation is still a complex problem. The
codebook searching is so computationally demanding
that a direct implementation requires very long
computation time, much more than real-t ime
requirement. In the searching process, each prototype

Pitch

Perceptual
Distortion

.-rr-rrrrrrrrrrrrrrrrrrrrrrrrrrrlrrrr
Codebook Gain

Mean
Squa re +

1 Measure 1

I

Minimization 4

Fig. 1. Conceptual CELP analyzer.

must go through three filtering (the pitch, spectral, and
perceptual filters) and one mean-square processes. It is
easy to show that a brute-force approach would require
a processor with more than 34 million MIPS, for a real-
time CELP [Lang92]. An early ‘practical’ CELP
implementation required 125s of Cray- 1 computation
time to process one second speech [ScAt85], while real-
time procedure must process one second of speech in
one second or less.

Thus, a practical CELP system must employ fast
algorithms, which exploit the computational structure of
a CELP scheme. In the process of developing practical
CELP, the actual structure becomes significantly
different from the conceptual one, while still performing
the same functions (see [Lang921 for details on the
transition). For example, the spectral parameters are
quantized and represented now by a set of line-spectncm
pairs (LSP) [SoJu84]. The pitch filter becomes another
codebook, called adaptive code book (ACB). The
codebook of the random signals is then called stochastic
code book (SCB).

Unfortunately, the fast algorithm has significantly
increased the implementation complexity as the
optimization blurs the structure in favor of speed. The
algorithm now combines the spectral predictor and the
perceptual weighting filter into one filter. A joint
optimization scheme searches for the suboptimal
combination of codebook parameters, instead optimal
combination through total exhaustive search of all
combinations, as implied by the conceptual structure.
The use of a special SCB results in a fast iterative
search, in which the results of the perceptual distortion
calculation from current prototype helps the calculation
of that of the next prototype. It should be noted that
although there is a proposed U.S. Federal Standard (FS)
1016 CELP [CaTW90] which describes each bit in the
compressed speech, it does not specify how to obtain the
compressed speech, leaving it to CELP implementors to
develop one.

1.4. Paper Overview

The remaining part of this paper describes a practical,
near real-time CELP algorithm, which reduces the
computational power requirement by a factor of more
than 175,000. Section 2 describes the procedures to
compress and decompress speech. This paper focuses
mainly on the description of algorithms compatible with
the FS-1016 to enable communication with other FS-
1016 systems. In Section 3, we briefly explain the
actual computer implementation, resulting in
performance ranging from 14 to 0.85 of real time,
depending on the platform. The algorithm has been
implemented on an IBM PC-AT equipped with a
TMS32OC30 (C30) e v a l u a t i o n m o d u l e (E V M)

[LaKi91],[Lang92]. The system is suitable for PC-
based packet radio or speeclh recording systems. The
algorithm has also been ported to the various UNIX
platforms as well as MS Windows 3.1 platform for a
voice mail development. Section 4 discusses
performance of the various implementations, including
their limitations. Finally, Section 5 provides
conclusions.

2. FAST CELP PROCEDURES

2.1. Input and Output

In practice, CELP is a block coding, in which aframe
of 240 PCM speech samples s[n] (with a total of 1.92
kbits) denoted as a vector s is converted to 144 bits of
compressed data, called FS-l016 CELP parameters or
data stream. The CELP parameters now consist of:
a. the line spectrum pair (LSP) parameters;
b. the adaptive codebook (ACB) parameters; and
c. the stochastic codebook (SCB) parameters.
All LSP, ACB, and SCB parameters are entries
(indexes) of quantization tables and codebooks, namely
LSP table, ACB, ACB gain table, SCB, and SCB gain
table [LaKigO], [LaKigl]. They all require 138 bits
only. The remaining 6 bits can be used for error
correction, synchronization, and future expansion.

Naturally, the CELP procedures should perform a
CELP compressor and decompressor system extracting
CELP parameters from s[n], and reconstructing s back
from the FS-1016 data stream. Specifically, a CELP
compressor (usually called analyzer) requires (i) LSP
analysis procedure to obtain the LSP parameters, and
(ii) codebook search procedure for both ACB and SCB
parameters, while a CELP decompressor (usually called
synthesizer) requires speech :synthesis procedure. We
describe the procedures as follow.

2.2. LSP Analysis

The CELP analyzer obtains the LSP parameters
through the following three steps: (i) performing linear
predictive coding (LPC) analysis on the PCM samples
to represent spectral information [pars86], [Proa83], (ii)
converting the LPC parametlers into LSP parameters
[KaRa86], [HaHe for efficient representation, and
(iii) ensuring LSP parameter stability.

2.2.1. LPC Analysis

The aim of LPC analysis is lto obtain LPC parameters
ai (collectively denoted as a) corresponding to the
spectral filter. The spectral [(or LPC) filter models a
human vocal tract. One most common model is a lO-
order all-pole digital filter H(z) with ten coefficients ai,
as follows

99

H(z) = l; 1
= A(z)

(1)

l+C

-i mv
ai2

i = 1

Let the input (excitation) of this filter be a zero-mean

signal t. The output of this filter is then $, according to
(in z-domain notations)

h) = H(z)T(z) l (2)

For a given s, the LPC analysis finds a that minimizes

IIS - g(I . The elements (ai) of such a vector a are LPC
parameters, which are the solutions of a linear equation
system

10

0 = c airi j a0 = 1 j = 1, 10 (3)

i=O

where ri are autocorrelation terms defined as

N - l

r. =
c s[n]s[n-i] i = 0, 10 (4)I

n = i

2.2.2. LPC to LSP Parameter Conversion

The system must quantize a using the LSP analysis
since ai are 10 real numbers which require too many bits
(10x16=160 bits) for representation. On the other hand,
the LSP parameters (we call them LSPj) are more
efficient (only 34 bits) because they are ten integers
ranging form 0 to 8 (or to 16), corresponding to the
entries of a suitable LSP table.

To show the conversion, we first
represented by zi, which are zeros

show that a can
of two polynomi

be
.als

p(z) and q(z) related through

P(z) = A(z) + z-l ‘A(~-‘) 0

c?(2) = A(z) - z-l ‘A(?)

Clearly, polynomials p(z) and &) represent H(z). In
other words, zeros zi of p(z) and q(z) (eleven each) can
represent a.

Furthermore, zi can be represented fully by q, as

“i = arg(zi); i = O,9 (6)

where a.rg(*) is the argument of a complex variable. The

proof relies on the fact that 2 = 1 andz= -1 are always
the zeros of p(z) and q(z), respectively. Thus the 20
remaining zeros are sufficient to represent p(z) and q(z).

Furthermore, all zi are symmetric about the real axis,
and lie on the unit circle in the z-plane. Thus, 10 zeros
(below the real line) are actually redundant, leaving us
with the remaining 10 significant zeros, which uniquely
corresponding to 10 values of Oi through Eq. (6).
Furthermore, it can be shown that Oi with even and odd
i correspond to P(z) and q(z), respectively. We then
conclude that these 10 values of (0j can reconstruct all
the zeros of p(z) and
Equivalently, for a given

q(z) 9
a, we

thus representing a.
ways derive suchcan al

Oje

Having obtained oj) we can efficiently represent them
through quantization. Although we can directly
quantize a) the dynamic range of aj is high (i.e. there are
many significant values of ai>, requiring many
quantization steps to achieve low quantization error. On
the other hand, each aj has a much limited dynamic
range, since the ranges of aj are disjoint subintervals S’
in a real-number interval of 0 to 7c, i.e.,

oil s.;J O~~S*ac;
i ’ (7)

i+j* (SjlTSi=O); j = 0, l **,9

Thus, fewer quantization steps for u)i can achieve the
same quantization error.

We then use the FS-1016 LSP table to quantize aj
For each oj, FS-1016 sets a list of 8 possible quantized
values of aj (or 16 if j is 2 to 5), covering S’ and its
neighborhood. Thus, there are 10 lists, namely list j, j =
0 to 9, collectively called the FS-1016 LSP table. Let
LSPTablelj,r) be a particular quantized value indexed by
i in list j, where i is from 0 to 7, or to 15. We quantize U)i
by selecting i such that LSPEzblelj,i] is the closest value
to aj in list j. NOW, assigning such an i to LSPj and
performing similar steps for all j, we have LSPj as a
representation of the quantized aj. We have called those
LSPj as LSP parameters, which can now represent a.
This representation is efficient because we only need
3+4+4+4+4+3+3+3+3+3 = 34 bits for each a, instead of
160 bits in the original floating-point form.

One advantage of using the FS-1016 LSP table is that
we can derive a fast LSP conversion algorithm, by
searching the table without actually knowing the exact
zeros. There are numerical methods such as Newton-
Rhapson and Jenkins-Traub [pTvF92] for finding the
zeros of p(z) and q(z), but they are tedious.
Furthermore, the exact aj must later be quantized
anyway.

100

A different and faster approach is by checking zero-
crossing of a new pair of polynomials P(X) and G(x).
These polynomials are related to p(z) and q(z) in the fact
that their zeros, xi, are

3 = COS 63i

Such P(X) and G(X) must then take a form of

5

p(x) = c biri

i = O
5

i(x) = c
CiXi

i = O

where the coefficients b and c are

b5 = 32

b4 = 16p1

b, = UP,-%

b2 = 4(P3-4P$

bl = VP4 - 3P2 + 5)

bO = Pg -2P3+2Pl

and

c5 = 32

c4 = 1641

c3 = wy-5)

c2 = wy4ql)

c1 = UC?4 - %I2 + 5)

cO = 45 -2q3 + 2ql

(8)

(9)

(11)

Here, pi and qi are coefficients of p(z) and q(z),
respectively, where i refers to a polynomial term

.
containing 2’. The po and 40 are always equal to one.
For a given a, it is easy to show using Eq. (7a) that the
remaining pi and qi can be obtained recursively through
aloopofifrom 1 to5of

The fast LSP conversion then uses the fact that each x
associated with a zero of p(z) or q(z) causes p(x) or q(x)
to be zero, respectively. Thus, the scheme applies
values of x corresponding to o in the LSP table (i.e.,
LSPTablelj,i]) to the polynomials p(x) and G(x), and

observes for zero crossings. As before, j even and odd
correspond to p(x) and i(x), respectively. For each j,
the scheme then assigns certain i to LSPj, such that
x=UPTable[i,i] is the closest x within the same j that
causes a zero crossing of p(x) or i(x) .

2.2.3. Ensuring UP Stability.

We must have a scheme for robust representation of
the LPC parameters, because they are very sensitive and
the conversion to LSP parameters increases the
sensitivity. Since H(z) is a recursive filter, a distortion in
a can easily move the poles of H(Z) to outside the unit
circle of the z-plane, resulting in an unstable H(Z). The
conversion to LSP further introduces more distortion
due to quantization errors.

Fortunately, if the ordered values of U+ are
monotonically increasing (fro;m 0 to 7c), the LSP method
guarantees the stability of H(z) [SoJu84]. Thus, before
transmitting the LSPj, the sclheme verifies the ordered
values of Uj corresponding to LSPj. If the ordered
values violate the monotonicity, the scheme replaces it
with a stable set of LSPj form previous frame.

Sometimes, the pre-defined quantization steps can also
create a stability problem. There are cases when some
adjacent aj are too close together, so that for the given
resolution, the table fails to distinguish them. Or, the aj
may lie beyond the table coverage. In this situation, the
fast LSP conversion usually gives incorrect, unstable
LSPj. An effort to avoid such cases is by expanding the
bandwidth of a prior to LSP conversion process. Thus,
instead of using a, the scheme use c, defined as

c. = ai+
1 (13)

where y is the expanding factor (typically set to 0.994),
and i is an index from 1 to 10.

2.3. Codebook Parameter Searching

2.3.1. Searching Problem

To obtain the codebook parameters, the analysis
searches for codebook ‘parameters minimizing
perceptual distortion

where II*11 denotes a norm (or magnitude) of a vector,
and Pw represents a perceptual weighting filter defined
as

HZI -)w‘w(‘) = H(z) O<yll (1%

101

A typical y is 0.8. (Such a P&) makes Eq. (2) a subframes, and the scheme performs four searching
perceptual spectral-masking based measure rather than
simply a pure Euclidean measure of waveform
closeness). We call e the perceptual error vector.

The codebook parameters affect perceptual distortion
in Eq. (14) through the excitation t and then B . A
codebook consists of prototypes or codewords b, which
are arrays of impulses b[n]. Each codeword is indexed
by a codebook entry called CBEntry. For each
codebook, there is a gain table containing gain factors,
which are real numbers. Each gain factor is indexed by
a gain table entry called GainEntry. Thus for the ACB
a n d S C B t h e r e a r e ACBEntry a n d SCBEntry,
respectively, while for the ACB and SCB gain table
entry there are ACBGainEntry and SCBGainEntry,
respectively.

A set of those entries produces t according to

t= b (,+ACBEntry)g (JACBGainEntry) +

b (sj (SCBEntry)g (s) (SCBGainEntry)
(16)

The bfaJ(ACBEntry) and bt,)(SCBEntry) are the ACB
and SCB codewords pointed by ACBEntry and
SCBEntry, respectively, while gtO)(ACBGainEntry) and
g(JSCBGainEntry) are the ACB and SCB gain factors
pointed by ACBGainEntry and SCBGainEntry,
respectively. For a given s, the t produces g and then e
according to Eq. (2) and Eq. (14), respectively. Thus the
search problem becomes: for a given searching target s,
find ACBEntry, SCBEntry, ACBGainEntry, and
SCBGainEntry corresponding to e that minimizes Eq.
(16) .

To solve the searching problem, there are several
techniques such as those described in [KlKK90].
However, not all off them can be combined. We
describe here fast searching algorithms that we actually
use. Some are mandatory (implied by FS-1016), while
some are our choice. We also discuss their

processes to complete encoding of one frame, resulting
in four sets of codebook entries. The SCB size can then
be reduced to as low as 5 12 while preserving natural
speech quality.

It should be noted that since ACB is a codebook that
actually represents a one adaptive tap, all pole pitch
filter [Lang92], its size is not determined this way. The
ACB size determines the range of pitch frequency it can
cover. For an excitation x[n], the filter produces

Y bl = gyb-4 +xbl (17)

with g as the filter coefficient (equivalent with ACB
gain) and d is the tap position (equivalent with ACB
entry). Varying d changes the pitch frequency (in Hz)
according to

Pitch Frequency =
Sampling Frequency

d (18)

FS-1016 covers pitch frequency between 54 Hz to 400
Hz, requiring d to be between 20 to 147. Thus, we use
an ACB size of 128. FS-1016 actually provides a size
option of 256 to improve the pitch resolution in high
frequency (associated with woman speakers). It is clear
from Eq. (18) that the pitch resolution at higher
frequency is coarser. The additional ACB entries are
then added to improve the high frequency resolution.
To reduce the computational cost, we did not use this
option.

The subframe search approach also enable a smoother
transition of LSP parameters through interpolation.
Thus for each subframe i = 1, . . ., 4 , the scheme uses
different H(Z) coming from interpolated LSP parameters
defined as

9-2i 2i- 10. =
J

-8-Previousw. + gPresentaj
J (19

parametersThus

2.3.3. Combining Perceptual and Spectral Filters

the system must always keep the LSP
from the previous frame.

consequences in the scheme.

2.3.2. Breaking the Frames into Subframes

One obvious way to reduce the computational cost for
searching is by reducing the size of the codebooks, i.e.,
reducing the number of prototypes in the codebook.
However, this approach increases the vector
quantization error. To reduce the quantization error, one
should reduce the length (i.e., dimension) of the
prototype. However, this increases the bit requirement
because we need more prototype to represent a segment
of t. FS-1016 solves this delicate balance by using a
prototype length of 60 samples. This means, the
searching target in one frame is split into four s in four

We can reduce the computation cost by reducing the
number of filters used during the search. To compute
the perceptual distortion in Eq. (14), each prototype
must pass through the LPC filter and the perceptual
weighting filter. In the z-domain, the perceptual
distortion vector is

E(z) = PJZ) {S(z) -3 (2) 1

= PJz)S (z) - PJz)H (2) T(z)
(20)

= Y(z) -W(z) T(z)

= Y(z)-X(t)

102

where

Y(z) = pww (a (21)

HZ
W(z)

0= PW(z)H (z) = &H(z) = H
0z

Y
(22)

X(z) = W(z) T(z) (23)

Observe that there is only one filtering W(z) required
now (i.e., Eq. (23)) for every prototype. As a new
searching target, Y(z) is calculated once only using Eq.
(21), and then the search minimizes (in vectorial
notations)

II IIe * = llv-XII2 (24)
There is a slight problem of this approach if we

calculate Eq. (23) in vector and matrix operations. In a
matrix form, filter W(z) is approximated by a 60 x 60
matrix W defined as

w[O] 0 . . . 0
W = W[l] W[O] . . . 0

1 I
(25)

.
w [59] w [58] . . . w[O]

where w[i] are the impulse responses of W(z), such that

X = w t (26)

Unfortunately, the search results are good only if the
CELP synthesizer also uses H(z) in a matrix form,
which is not the case. Let z be the zero response of H(z)
at the synthesizer, i.e., z[n] are the output of the H(z)
when its input is zero for all subframe. In practice, z is
not zero due to the non-zero contents of the H(z) delay
elements, resulting from the previous excitation. Thus,
the actual output of the synthesizer is

ii = Ht+z (27)

The analyzer must then introduce a compensation
scheme such that we minimize Eq. (14) but still use
combined filter W with Eq. (26). From Eq. (27) we have

P3
W

= P Ht+P z = x+PWz
W W (28)

Using the derivation in Eq. (20), we have

II II
2 2

e =
I I
P s-x-Pwzll

W

= Pw(s-z) --XIIII
2

= llu-xl12

Now, 7 is the new searching target, defined as Fig. 2. Practical CELP analyzer.

Y = Pw(s-z) (30)

Let e(CBEntry, GainEntry) be the perceptual error
vector corresponding to a codebook entry CBEntry and
a gain entry GainEntry. Clearly minimizing

Ile(CBEntry, GainEntry)ll* =
6

I& - x(CBEntry, GainEntryf
(31)

is equivalent to minimizing 1~4. (20), with z has been
taking into account. Figure 2 shows the new structure.

2.3.4. Serial Search

To further reduce the computational cost, the scheme
serially searches the ACB parameters before the SCB
parameters. The system uses 5 12 and 128 entries for
SCB and ACB, respectively, and 16 entries for each gain
table. If the scheme has to search all codebooks
simultaneously, it has to search through
512~128~16~16 = 16,777,216 entries. On the other
hand, serial search works on 5 12x16 + 128x16 = 10,240
trials only.

Original Speech ,

,, b(SCBEntry) LPC S

S C B +&h
Converte

I A‘1Find

I - I T&le I I I r 1

103

Consequently, ACB and SCB searches differ in the one with the highest Peak value. This CBEntry and
searching targets. The searching target of ACB is i as its associated GainEntry become the desired code-

defined in Eq. (30). The resulting ACB parameters book parameters.

alone can produce x according to Eq. (26), but they Notice that there are three main computational

result in a high llel12. The SCB parameters must then processes: the convolution to obtain v and the two inner

generate a signal that ‘fills the gap’ between f and such products (9, v) and (v, v) . They are called many times,

an x. Thus, f - Wt becomes the SCB searching target,
as many as the codebook size. Consequently, they are

where t is obtained from Eq. (16) using newly obtain
the bottleneck of the system.

ACB parameters but without SCB parameters. 2.3.6. Fast Convolution with Special Codebooks

2.3.5. Joint Optimization Search

A joint optimization scheme suboptimally searches for
codebook and gain entries in one process, thus further
reducing the number of prototype trials. In minimizing

*
lie(CBEntry, GainEntry)llZ, the system should search
through all combinations of CBEntry and GainEntry.
However, the joint optimization scheme assigns an
optimal GainEntry for each CBEntry, so that the scheme

The search scheme employs a fast convolution
algorithm for the convolution in Eq. (32) by exploiting
the overlapping property of the codebook elements
[KlKUO]. As a result, some of the convolution results
of an entry can be used to compute convolution of the
next entry. Let us design an SCB such that all the
prototypes’ elements come from an array r having 1082
elements. Suppose the elements of a prototype pointed
by CBEntry (i.e., b(CBEntry)) are bCBEntrv [i] with i

effectively searches for CBEntry only. In other words, = o, 59. Then we force the elements to G
instead of searching through 10,240 entries, the scheme
only needs to search through 512+128 = 640 entries. bCBEntry iEl = r[2(511-CBEntry) +i] (36)

This suboptimal solution saves computation in an order
of magnitude. The basic approach is as follows.
1. For every codebook entry called CBEntry, compute

v (sometime called the normalized x, i.e. the x

It can be verified that the prototypes are overlapping,
i.e., most elements of a prototype are also elements of
another prototype in its neighborhood.

obtained with unit gain, according to
I

with this special SCB, we can obtain VCBEntry [i]

v = W b[CBEntry] (32) using Eq. (32) as follows

Here, the b[CBEntry] is a prototype in the codebook 59

pointed by the CBEntry. This process is often called [I (37)
convolution.

‘CBEntry i = c w li - il bCJjEnt,.y ul
i=O

2. For every CBEntry, compute GainEntry associated
with the CBEntry. Suppose g is the gain value which To simplify the notation, define u(CBEntry,i& as

scales b to become t. Clearly,

X = g v (33)

u (CBEntry, i,j) = w u - i] bCBEntV u]
(38)

= wu-i]r[2(511-CBEntry) +j]

One way to minimize Eq. (31) is to maximize a Peak
value defined in inner-product terms as

Peak = (y, X) - (x, X) = g(i, v)-g2(v9 v> (34)

To find the best g to maximize Eq. (34), we take a
derivative of Eq. (34) with respect to g, and find its
root. The root, which is the best g, turns out to be

Furthermore, GainEntry is now the index whose
value in the gain table is the closest value to this g.

3. For every CBEntry, compute also the Peak value

We then have

1

‘CBEntry i =I I I: u (CBEntry, i, j) +

j=O
61

c u (CBEntry, i, j) -

j=2
61

c u (CBEntry, i, j)

j = 60

(39)

= head term + middle term - tail term

using Eq. (33). It can be verified easily that the middle term is exactly
4. Find the CBEntry that has the closest distance, that is

‘CBEnrry - 1 [i3 betause of the overlapping property.

104

This remarkable fact leads to a fast iteration for
convolution. Now, instead of performing 60 terms of
multiply and accumulate (MAC) operations as implied
by Eq (37), the scheme calculates a VCBEntry [i] in 4

MAC only to obtain the head and tail terms, and uses
the previously calculated vCBEntry- 1 i[3 as the

middle term. The computational cost reduction is by a
factor of 15.

We can even avoid having to compute the tail term if
we can afford having a long array v’ and a short array v”
of length 1082 and 60, respectively, as shown in the
following modified joint-optimization algorithm.
1.

2.

3.
4.

We start with computing v. [i] using the old
method (Eq. (37)) as a starting point for iteration.
Store the results into an empty v’ according to

v’[i] = v. [i] ; i = 0, 59 (40)

Calculate Peak and GainEntry as in the joint optimi-
zation, and store them in BestPeak and BestGainEn-
try, respectively. Store also CBEntry (in this case is
0) into BestCBEntry.

Then for every CBEntry = 1, 511, perform:
Calculate the 60 head terms and store it in v”.
Update the array v’ according to

v’ [i + 2CBEntryl t- v’ [i + 2CBEntryl + v” [i] (41)

5. Calculate Peak and GainEntry as in the joint optimi-
zation. However, get v from v’ according to

v [iI = v’[i+2CBEntry] ; i = 0, 59 (42)

6. Compare Peak with a variable BestPeak (predefined
as zero). If current Peak is larger than BestPeak, the
scheme updates BestPeak with Peak, and stores
CBEntry and GainEntry in BestCBEntry and Best-
GainEntry, respectively.

After performing those steps for all entries, the desired
parameters are available in BestCBEntry and
BestGainEntry.

Further cost reduction is due to the fact that FS-1016

SCB uSeS bCBEntry [i] that is not only overlapping but

also sparse (77% of the elements are 0) and ternary (i.e.,
the elements takes values -1, 0, and 1 only). Thus
before calculating the head terms in the Step 3 above,
the scheme checks if bCBEntry u] is zero. In such

cases, 60 computations of the term using this
b CBEntry u] in Step 3 are skipped. The scheme

should have 77% of such cases.

With ternary bCBEntrY u] , multiplications in

computing the head terms are not necessary anymore
because multiplication by 1 and -1 are equivalent with
changing sign only.

Although the above example is derived for the SCB
search, the ACB search can also use fast convolution.
Since ACB is actually a one-tap, all-pole filter, the
overlapping property is inherent in the ACB. However,
the ACB elements are not telmary nor sparse, thus both
calculation of the head terms and multiplications cannot
be omitted. But, the calculation is fast already, because
the number of MAC in its head term is one only (except
in some special cases at the lower entries), instead of
two as in the SCB. Furthermore, the size of the ACB we
use is 128 as opposed to 5 12 of the SCB.

It should be clear that this fast convolution works only
if we use W(z) in a matrix form, otherwise we cannot
have Eq. (37) and the rest of its derivations.

2.3.7. Delta Coding for ACB Parameters

Further computation reduction is possible for ACB
search. Here we utilize the f-act that human pitch does
not suddenly change within two subframes (15 ms).
This means we expect thalt the difference between
selected codebook entries of consecutive subframes can
be less than 64 entries. Tt~us we can employ delta
coding that codes the entry difference only. Such
coding needs a reference point. The FS- 1016 uses ACB
entries of odd subframes as the references and delta
codes the even subframes, i.e., the entry of the second or
the fourth subframe is represented by the difference
between the actual entry and the previous-subframe
entry. This scheme reduces the computation because the
even search routine operates on a subset of the ACB
only (64 entries instead of 1128 entries). This scheme
also reduces the bit rate since the number of bits to
represent the difference is less than that to represent the
actual entry.

2.4. Speech Synthesis

2.4.1. Synthesis Process

A CELP synthesizer reconstructs 240 samples of s
from a set CELP parameters. In principle, the
synthesizer must first construct the filter H(Z) using the
interpolated LSP parameters. The synthesizer then
computes the excitation impulses t for one subframe
using the codebook parameters according Eq. (17).
Finally, it applies the excitation impulses t to the filter

H(z) to synthesize 60-element speech g using Eq. (2).
Repeating the process three more times results in a

complete 240 elements of $.

105

Since most of the steps have been explained, we just
describe here the conversion of LSP to LPC parameters.

c5 = 32

4

‘4 = -‘5 c x4i+l
i=O
4 5

2.4.2. LSP to LPC Conversion

We want to reconstruct a from the interpolated LSPs
Oj. Let us define xp and xq according to

xPi = 02i

I
i = 0,4 (43)

x4i = “2i+l
i = l j = i + l

3 4 5

c2 = -c5 c c c xQ,Xq,xqmThe following steps then convert the LSP:
1. Recover the array b as in Eq. (10) according to the

following equations
i=Oj=i+ln=j+l

2 3 4 5

b5 = 32

i=lj=i+lm=j+ln=m+l4

b4 = -bjCxpi+l
i = O
4 5

4. Obtain set of q(z) coefficients, according the follow-
ing equations

c4
41 = 16

i=lj=i+l

3 4 5
(44)

c3 +40
42 = -g-

i=Oj=i+ln=j+l
2 3 4 5 (47)c2 + lQ1

43= 4

cl +6q,- 10
44 = 2

i = lj= i + l m = j + l n = m + l

b, = -b5 (xP1xP2xP3xP4xP5)

45 = q) + 2q3 - %I12. Recover the coefficients of p(z) according the fol-
lowing equations

b4
4 = 16

5. Finally, use p and q to construct a by inverting Eq.
(12), as follows

a0 = 1

PO = c?() = 1
b3+40

P2 = -g-

Pi-1+Pi+qi-qi-l
ai =

2 ; i = 1, 5 (48)(45)b, + ‘6Pl
P3= 4

Pi-1 +Pi+qi-Qi
‘11-i =

.
2 9 i = 1, 56, +6p2-10

P4 = 2

3. Conmm3~ IWLE~~ENTATION= bo+2p3-2pl

We can now translate the above algorithm to a
computer implementation. We have coded the
procedures in ANSI C routines. We briefly describe the
actual program to show how a CELP system actually
uses the procedures. Details of routines for codebook
searching are presented in [GrLK93].

3. Recover array c as in Eq. (11) according the follow-
ing equations

3.1. LSP Analysis

First, a routine PCMtoFloat converts the speech
samples s into a floating point form, since s usually
comes from an analog-to-digital converter with integer
data format, while floating-point computation is pre-
ferred to reduce the distortion caused by finite-length
registers. A routine AnalyzeLPC then extracts a from
s, explained in Section 2.2.1. Prior to converting a to
LSPs, the scheme calls a routine ExpandBandwidth
to expand the bandwidth of ai using Eq. (13) with an
expanding factor y of 0.994. This procedure ensures
that a are within the range of the LSP table. The scheme
calls ConvertLPCToLSP routine to obtain LSPj from
a, according to Section 2.2.2. Finally, a routine
CheckLSPStability verifies the monotonicity of
the LSPj before allowing them to be used (see section
2.2.3).

3.2. Codebook Searching

A computer routine called CodebookSearching
finds the ACB and SCB parameters. First, we must con-
struct a 60x60 matrix W representing W(z) (see Eq.
(25)). The scheme starts with obtaining a. An Inter-
po lat eLSP routine provides LSPs for each individual
subframe by interpolation using Eq. (19). The filter W
practically requires a instead of LSPs, thus the scheme
calls ConvertLSPtoLPC routine for the conversion
(see Section 2.4.2). An ExpandBandwidth routine
then performs Eq. (13) to generate c, with an expanding
factor y of 0.8. It is easy to show using Eq. (22) that
W(z) is equivalent with H(z) with c replaces a. Further-
more, to represent the filter W(z), W must contain the
impulse responses, wi, of the filter, as shown in Eq. (22).
A FindImpulseResponse routine
elements.

provides such

Having constructed W, the scheme prepares for ACB
parameter searching. The FindACBSearching-
Target routine determines the ACB searching target
i for the current subframe using Eq. (30).

If the subframe is odd, i.e., the first or third subframe,
the scheme calls the ACBSearchingOdd routine to
get the ACB parameters, otherwise the ACBSearch-
ingEven performs that function. The scheme then
computes the searching target of SCB searching, by
calling FindSCBSearchingTarget. The SCB-
Searching obtains the SCB parameters and stores
them in an output buffer. The routine now has a com-
plete set of the codebook parameters.

Before the loop proceeds for the next subframe, it
must prepare and update the system states. First, an
Updat eACB routine updates the contents of the ACB
with new values from the excitation impulses to imitate

the effects of delay elements in an all-pole, one-tap pitch
filter. Second, the delay elements of H(z) must also be
updated according to those of the CELP synthesizer. At
this phase, the synthesizer has stored values in its delay
elements which has an additive effect to the synthetic
speech produced later in the Inext subframe. The Get -
De layElement s tracks those values, which are later
used by the next-subframe FindACBSearching-
Target to compensate the additive effect represented
by the zero response, as discussed in Section 2.3.3.
Finally, if the subframe is even, i.e., the second or fourth
subframe the Del t aEncoding ACB routine encodes
the ACB entry using a delta coder.

Having obtained the LSPs and all entries for ACB and
SCB for one frame, the scheme collects them in an FS-
1016 data stream for transmission, by calling Con-
VertToDataStream. A routine UpdatePrevi-
OUSLSP updates the contents of previous LSPs with the
newly obtained LSPs to be used for interpolation (using
Eq. (19)) and stability checking in the next frame.

3.3. Speech Synthesis

A synthesis program converts each FS- 1016 data
stream into a frame of speech. First, a routine Con-
vertFromStream unpacks; the LSPs and the entries
of ACB and SCB from the data stream. Since two of the
ACB entries are delta coded, a routine DeltaDecod-
ing obtains the actual entries.

As in the case of codebook searching, the synthesis
performs a loop for four consecutive subframes. The
loop starts with InterpolateLSP to obtain smooth
transition of the LPC filter H(z), using Eq. (19). A rou-
tine ConvertLSPtoLSP provides a from the LSPs to
construct H(z) (see Section 2.4.2). To get the excitation
impulses t, the loop calls Updlat eACB, which computes
t using the ACB and SCB entries, and also updates ACB
using the resulting t. Finally, a routine GetDe-
1ayE lement s applies the t to H(z) to produce the
speech, and at the same time, updates the delay elements
of H(z) to be used later for the next H(z).

Before the process continues to the next frame, a rou-
tine UpdatePreviousLSP updates the contents of
previous LSPs with the current LSPs.

4. PERFORMANCE

The algorithm presented here is fast enough for
practical uses, such as store-and-forward
communication, voice-mail, and multimedia. We have
ported the computer program for various platforms,
including TMS C30, IBM PC, SUN workstations, and
IBM PowerPC based workstation. It has also been
ported as a dynamic link library (DLL) for Windows
3.1, ready to be used for various speech applications.

107

Figure 3 shows a simple CELP compression application
as an example of accessing the DLL.

Fil

0 Decompress
@ Compress

3. A simple Windows 3.1 CELP system utilizing
the CELP dynamic link library.

Table 1 shows that the execution time is within a
reasonable range. On the IBM Power PC workstation,
the algorithm run faster than real-time (0.85 real-time
for both analysis and synthesis). The execution time of
the C30 implementation is approximately two to three

the routines require between five times to twice real-
time requirement. IBM-PC 486DX
requires approximately 14 times real-time.

up the searching, the synthesized speech still
has high intelligibility and natural quality [Lang92].
The results from a Fairbanks rhyme test show an
intelligibility score of more than 95% word correct
identification. Furthermore, subjective and objective
tests using male spoken Harvard sentences result in a
mean opinion score (MOS) of 3.21 and a segmental
signal-to-noise ra t io (SEGSNR) o f 10 .10 dB,
respectively.

platforms, in terms of % real-time.

Analysis Time
(96 real-time)

Synthesis

(96

PC 486DX/33

SUN Spare 2

SUN Spare 5

PC-AT/ TMS
c30

PowerPC
(Power 590)

1304 23

445 12

221 5

220 5

83 2

Furthermore, the size of the executable file is small.
The C30 program and data require less than 11 Kwords

108

of memory. The size of the SUN version executable file
is 64 Kbytes. The algorithm can be coded modularly in
C to enable tailoring it to another application.

However, the fast algorithms is quite complex, i.e., it
involves many processes, loops, and variables. The
efforts in reducing the computation time results in
increasing the memory requirement to hold look-up
tables and codebooks. The algorithm also reduces the
overhead in data transfers by fixing the locations of
arrays and globally using them. This increases the
complexity, because data may be altered by several
different processes, which means there are many
processes that should be considered simultaneously.

In most platforms, a real-time application still requires
faster processors. Our observation on the C30 program
reveals that the codebook searching consumes 218% of
real-time requirement, i.e., 2.18 seconds of codebook
searching are required for every second of speech. As
shown in Table 2, this results from the inner products
inside the joint optimization scheme, which consumes
111% of the real-time requirement. This part should
become the main attention to improve the execution

speed*
However, it should be noted that the synthesis part

requires only 2 to 23% of the real-time requirement of
execution time in all platforms. This means the system
can easily perform real-time playback. This asymmetric
type of systems (i.e. systems with easy playback) has
found a wide range of applications, such as in
broadcasting, database, library, and CD-ROM based
multimedia.

Table 2. Computation time requirements of some most
demanding routines in TMSC30.

Processes % Real Time
.

Inner Products 111
r
Joint Optimization 148

I
Codebook Search 218

SCB Searching Target 6
‘

5. DIKUSSION

This paper has described an efficient algorithm and its
implementation of the CELP speech processing
system. Near real-time implementation is possible
using fast extraction of LSP parameters, fast searches of
ACB and SCB parameters, and CELP synthesis. The
codebook searches employ the joint optimization
scheme, which consumes the largest block of the
codebook searching computation due to a combination

of the complexity of this routine and the large number of
times it is called by the ACB and SCB searching
algorithms. The algorithm allows high quality speech to
be achieved with a bit rate of as low as 4.8 kHz. The
algorithm can be readily u s e d f o r C E L P
implementations, such as on (i) high quality low-bit rate
speech transmission in point-to-point or store-and-
forward (network based) mode, and (ii) efficient speech
storage in speech recording or multimedia databases.

We are currently seeking hardware implementation to
reduce not only the execution time, but also the physical
size of the actual implementation, We are studying the
algorithm for the purpose of casting some of its parts to
silicon. At this stage, a full hardware implementation is
premature since the optimality is not clear. However,
we should focus on casting the inner products and
convolution processes that have become the algorithm
bottleneck. Implementing the inner product process in
dedicated hardware is attractive, because it has a simple
computational structure, i.e., a regular multiply and
accumulate process of 60 terms. The convolution of
SCB elements in Eq. (39) is also attractive for hardware
implementation because the SCB elements are
predefined. As explained in Section 2.3.6, the ternary
property simplifies the convolution into an addition/
subtraction process with a branch controlled by SCB
elements, making it easier to implement in hardware.

A C K N O W L E D G M E N T S

This work was supported in part by the Natural
Sciences and Engineering Research Council (NSERC)
of Canada, the Manitoba Telephone System (MTS), and
now by the Telecommunication Research Laboratories
(TRLabs). One of the authors (AL) wishes to thank
IUC-Microelectronics ITB, Laboratory of Signals and
Systems ITB, and PT INTI Pe r se ro , Bandung,
Indonesia, for their support in this research work.

REFERENCES

[Ata186] B. S. Atal, “High quality speech at low bit-
rates: Multi-pulse and stochastically excited linear
predictive coders”, in Proc. IEEE Znt. Co@ Acoust.,
Speech, Signal Processing, (Tokyo, Japan), IEEE
CH2243-4/86, pp. 168 1- 1684, 1986.

[CaTW90] J. P Campbell, Jr., T. E. Tremain, and V C.
Welch, “The proposed Federal Standard 1016 4800
bps voice coder: CELP”, Speech Technology, pp.
58-64, Apr./May 1990.

[GrLK93] W. Grieder, A. Langi, and W. Kinsner,
“Codebook searching for 4.8 kbps CELP speech
coder”, in Proc. IEEE Wescanex 93, pp. 397-406.

[HaheQO] R. Ragen, and P Hedelin, “Low bit-rate spec-

tral coding in CELP, a new LSP method”, in Proc
IEEE Int. Conf. Acoust., Speech, Signal Processing,
IEEE CH2847-2/90, pp. 189- 192, 1990.

[JaJS93] N. Jayant, J. Johnston, and R. Safranek, “Sig-
nal compression based on models of huma.n percep-
tion”, Proceeding of IEEE, vol. 8 1, no. 10, pp.
1385-1422, October 1993.

[KaRa86] P Kabal, and R. P Ramachandran, “The
computation of line spectral frequencies using Che-
byshev polynomials”, IEEE Trans. ASSP, vol.
ASSP-34, no. 6, pp. 1419-1426, December 1986.

[KKK901 W. B. Kleijn, D. J. Krasinski, and R. H.
Ketchum, “Fast Methods for the CELP speech cod-
ing algorithm”, IEEE Trans. ASSP, vol 38, no. 8.,
pp. 1330- 1342, August 1990.

[LaKi90] A. Langi and W. Kinsner, “CELP High-qual-
ity speech processing for packet radio transmission
and networking”, ARRL 9th Computer Networking
Conf., pp. 164-169, 1991.

[LaKi91] A. Langi and W. Kinsner, “Design and Imple-
mentation of CELP Spezclh Processing System using
TMS32OC30”, ARRL 10th Computer Networking
Conf., pp. 87-93, 1991.

[Lang921 A . Langi, “Code-Excited Linear F’redictive
Coding for High-Quality a.nd Low Bit-Rate Speech”,
M.Sc. Thesis, The University of Manitoba, Win-
nipeg, MB, Canada, 138 pp‘, 1992.

[Pars861 T. W. Parsons, Voice and Speech Processing.
New York: McGraw-Hill, 402 pp., 1986.

[Proa83] J. G. Proakis, Digital Communication. New
York: McGraw-Hill, 608 pp*, 1983.

[PTVF92] W.H. Press, S.A. Teukolsky, W.T.. Veterling,
and B.P. Flannery. Numerical Recipes in C. (2nd ed)
New York, NY Cambridge University Press, 1992.

[ScAt85]M. R. Schroeder, and! B. S. Atal, “Code excited
linear prediction (CELP): high quality speech at
very low bit rate,” in Proc. IEEE Znt. Con$ Acoust.,
Speech, Signal Processing, IEEE CH2 118-8/85, vol
1, pp. 937-940, 1985.

[SoJu84] F. K. Soong, and B. -H. Juang, “Line Spec-
trum Pair (LSP) and spee,ch data compression”, in
Proc IEEE Int. Conf Acoust., Speech, Signal Pro-
cessing, IEEE CHl945-5/84, pp. 1.10.1-1.10.4,
1984.

109

