
M. Normandeau and LM. Barbeau (ve21,p)I
Department of matbhemat ic!; a.nd computer science

Universitly of Sherbrooke

Sherbrooke, Qu&bec CANAD, JLK 2EU,
{ normand, barbeau1)~CMmi.usherb.ca/

Abstract

This paper presents a case study of an object-oriented development of a sa~tellite tracking
software. Tt is designed following the Real-Time Object-Oriented Modeling (ROOM) mtthod-.
ology. The design resulting from the application of ROOM is implemented i n C+-+ on the*
QKX plaItform. Concurrent actors are naturally ma,pped to para,ilel p:ro~css~s. ROOM viclds.
a, modu1a.r architecture which is cleaq reusable, ,%nd maintainable. Use of QNX leads t o a
highlv performant a,nd reliable svstcm l This war1; is importa’nt because it shows ar,plicat.ion
of ad;anced softwart: engineering principles in a tieid u+ere most of the developA~ is still
based on stru;:tured (and non-structured) techniques.
Key words : Object-Oriented Modeling, Real-Ti me Systems, Satellitr Tracking..

1 Introduction

actor consist of data, behavior, and structure. Its execution is concurrent with other actors and it
communicates with them by means of messages. The actor model supports the basic elements of
the object-oriented paradigm such as abstraction, encapsulation, inheritance, aggregation, typing,
and concurrency [l]. Employment of such a methodology leads to high quality designs which are
very well documented, understandable, and easy to communicate as well as a evolve.

This paper is structured as follows. Section 2 presents the object-oriented model. The imple-
mentation of this model is discussed in Section 3. We conclude with Section 4.

2 Object-Oriented Model

This section details the object-oriented ROOM model devised for the satellite tracking problem. As
the ROOM methodology dictates, our satellite tracking software model is made of actors. These
actors represent the main active and concurrent components of the system. For each of them, a
structure and a behavior are specified. They communicate among themselves and with the outside
world through ports which are references to specific communication protocols. These protocols
are sets of messages that actors intend to exchange with one another. The structure presents the
c.omponents which make an actor and how they are related to one another. Components can be
either actors, ports or bindings which are links between pairs of ports. Diagrams may be used to
illustrate the structure and they represent actors as white boxes, ports as squares on the boundaries
of actors, and bindings as lines between pairs of ports (see Fig. 1). On the figure, only the names
of the actors and ports are displayed.

controllerTracker trackefControllef

Figure 1: Tracking system structure

A behavior specification is made of states and events. An actor moves from state to state when
events are triggered. Diagrams may illustrate the behavior of actors and they represent states as
rounded boxes and events as arrows (see Fig. 2). The black circle at the top left corner of the
diagram leads to the first state when the system starts.

Our model is made of three main actors : a’ console, a controller, and a tracker (see Fig. 1).
The console is the interface between the user and system. It is responsible for offering possible
actions to the user, getting his inputs, and sending them to the controller. The structure of COWOI~
isI fairly simple as it contains only two ports. The first one, ConSoleUser, is used to communicate

with the user. It refers to the ConsoleMessnges protocol which specifies the possible messa.ges the

WaitTrackParm

Figure 2: Controller behavior

user can send to console and vice versa. The actions available to the user are: setup a tracking
run, start a tracking run, stop a tracking run, and quit. While setting up a tracking run, the usei
is also asked for a choice of a satellite. The set of actions offered to the user depends on the state
of console. For example, if no tracking run is executing, it is impossible to stop one. The second
port, consolecontroller, allows communication with the controller through the Controller~4essages
protocol. It mainly relays user’s decisions to the controller.

The second actor, controller, executes the user’s decisions received from console. Once the
system is tracking a satellite, it is also responsible for providing to tracker the direction in which
the antenna should point. The controller contains component actors which are : g~-oz&7’~*nckc~*
and a&Provider (see Fig. 3). Their own description will be provided further on. The cont7-olle7-

receives messages from console that drives its behavior (see Fig. 2). Its main operations are to set
the station’s parameters, to initialize a tracking run, and to compute the azimuth and elevation
of the antenna at specified intervals. The tracker has one port, ControllerConsole, referencing
the ControllerMessages protocol allowing communication with console. It also has another port,
ControllerTracker, referencing the TrackerMessages protocol through which messages are sent to
tracker.

The last actor at this level is tracker which is a driver to the rotor’s interface card. It receives
the azimuth and elevation from controller through its trackercontroller port. It then sends it to
the rotor’s interface in a way it can comprehend it using its trackerRotor port. These ports are
the only components of the tracker actor. The Rotor protocol referenced by the trackerRotor* port
represents the driver specification of the rotor interface.

Explosion of controller uncovers two sub-actors (see Fig. 3): groundTracker and azEIPr-ot*idel*.
These embedded actors communicate through ports controllerGround Tracker a.nd contr& I+EI-
Provider. The groundTracker, given orbital elements and current GMT, is responsible for providing
the Sub-Satellite Point (SSP) and altitude of a satellite. It encapsulates the satellite-orbit model
described in Ref. [2] T h is communication with controller is done via the contr&r&o~& && I’

port. The azElProvider, given the SSP, altitude, and tracking station?s coordinates (Iatit;llcIe and

61

gfoundTra&er azElProvider

w w
groundTrackefController

azElProvid&ontrdlet

@J @iJ

controh3rGmundTrackef controdetAzElProvider

Figure 3: Tracking controller actor

longitude), is responsible for providing the azimuth and elevation of the antenna. The exchange
of messages with the controller is done through the azElProviderContro61er port. The controller,
as its name implies, coordinates its components and communicates with tracker and console. It
gets inputs from console and sends outputs to tracker. In order to promote modularity and reuse
of actors, the components of controller communicate only with their container and not between
themselves. This way, module coupling is greatly reduced and reusability is enhanced.

The controller behaves as pictured in Fig. (see Fig. 2). The transition between the initial state
(black circle) to state WaitTrackParm reads the station’s latitude and longitude and transmits
this information to azElProvider. The transition (either from WaitTrackParm or Ready to Ready)
labeled SetTrackParm, is triggered by the SetElements message from console that conveys orbital
elements for a selected satellite. The transition labeled StartTracking from Ready to Tracking is
triggered by the StartTracking message from console and begins a tracking run. The transition
labeled Timeout is triggered on a periodic basis and initiates the process of updating the direction
of the antenna. A tracking run is halted when the transition labeled StopTracking is triggered.

3 Implementation

In this section, we discuss the implementation of our software. Issues are the hardware and Op-
erating System (OS) on which our software must execute, programming language in which our
application is coded, and mapping of concepts of our design model to OS a.nd programming lan-
guage concepts. Let us first consider the hardware. We have the following pieces of’ equipment: a
Pentium class micro computer, a V/UHF all mode transceiver, a multi- mode digital signal pro-

cessor, an azimuth-elevation rotor along with its computer interface, a VHF antenna, and a UHF
antenna.

We have chosen the QNX operating system which has been developed specifically for real-time
applications. It supports multitasking and fast context switching. QNX has a micro kernel archi-
tecture which means that its kernel is light enough to reside in the processor cache. Consequently,
t is very performant. Several processes can run concurrently and QNX provides message based
nterprocess communication primitives (send, receive, arld r+~). The progra.mming langua.ge se-

lected for the implementation is C++ because, conceptuaH\r, it, is the closest to the ROOM model.r

6 2

amoung those available on QNX.

Actors of the ItOOM model can be mapped either to QNX concurrent1 processes or C++ sequen--

tial objects. Note that in the ROOM model, there are actors that can potentially run in parallel
(such as console, controller, and tracker) whereas oth(ers run purely in sequence with respect to each
other. (such as controller, groundTracker, and a.zEProvider). On the one hand, actors that have
the potential to run in parallel are mapped to processes communicating with the QNX message
passing primitives. On the other hand, every group of actors that run in sequence is mapped t,o a)
single process. Ea’ch actor becomes an object and communicates with the other actors in the group
with C++ method calls. This avoids the overhead that results from the calls to OS primitives
thus increasing efficiency. Hence, the group of actors controller, groundTracker, and azElProvider is
mapped to a single process whereas the actors console and tracker are both individually mapped to
a process. The res&ing implementation therefore results in three processes. These irnplementat,ion

strategies result in a simple and efficient organization.

4 Conclusion

This paper has presented the object-oriented developrnent of a real-time satellite tracking system. ItI
illustrates applicat’ion of object-oriented design principles in the field of sa,tellite telecommunications.
Use of a methodology such as ROOM lea,ds to a very well structured software that makes it easy tlo
understand and maintain. This project is not only a simulation but a full development including
a working implementation based on the QNX operating system running applications with real-
time performance. The demonstration performed in this project is important because it shows the
relevance and suitability of state of the art software, development techniques and tools in a field
where classical structured (and non structured) soft-ware development techniques are still largelvc
employed.

Future work in. our project includes development of a graphical user interface, remote control
through TCP/IP of tlle station, automatic control of the transceiver, and improvernent of the
satellite-orbit mathematical model.

Acknowledgments The authors would like to thank Francis Bordeleau from Carleton T_JniversitiJ
for fruitful discussions about the ROOM model of our satellite tracking software.

References

[l] G . Booth. Object-O riiented Analysis and Design with Applications. The Benjamin/Cummings
Publishing Company, Inc. Second Edition, 1994.

[2] M. Davidoff. The Satellite Experimenter’s Handbook. The American R,adio Relay League. Second
Edition, 1994.

[3] QNX Software Systems Ltd. QlVX System Architecture. 1993.

[4] B. Selic, G. c:u e11 kson, and I? T. Ward. Real-time Object-Oriented hfodeling. John Wilev and
Sons, Inc. 1994.

63

