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Abstract

Phase-locked loops (PLL) have found applications in many industrial applications such as
communication and control systems. The key requirements are stability and loop performance in terms
of signal-to-noise ratio and tracking errors. Here we present a two-step approach to PLL design. First,
we present a Lyapunov approach to analyze the loop stability. The parameter range that can guarantee
stability can be easily derived in the process. Second, we present a multi-objective optimization method
that can search a set of values within the above range of parameters to achieve an optimal trade-off
between loop bandwidth, transient and steady-state performance. Simulation results are contained to
illustrate the performance of our procedure.

1. Introduction

The principle of phase-locked loops (PLL) is simple; it consists of a phase detector, a loop  filter,
and a voltage controlled oscillator [l] [3-41. There are two key characteristics that make PLL widely
used in communications systems and control applications. First, the bandwidth of PLL can be very small
which means the signal-to-noise ratio can be improved in several orders of magnitude. Second, the PLL
can automatically track signal frequency.

Due to the nonlinear nature of the phase detector, the PLL is basically a nonlinear system. For
PLL to work in a wide range of conditions, the stability of PLL is very important. Conventional
approaches to stability analysis included linear analysis, phase plane plots, rule of thumb, and
simulation. All these methods have limited applications in low-order PLLs.  If the order of PLL goes
beyond three, it becomes almost impossible to analyze the stability of the system.

Lyapunov stability theory has been widely used in control systems, especially in nonlinear
systems such as robotics, motors and spacecrafts. A Lyapunov function is essentially an energy function.
The essential idea of Lyapunov approach is to find a Lyapunov function for the system and if it can be
shown that the derivative of the Lyapunov function is negative, then the overall system will be stable. In
this paper, we present an approach to stability analysis of second order PLLs since they have practical
applications in many areas.

Although stability is most important in the successful applications of PLL, it only provides a
range of parameter values which guarantee the stability. Trial-and-error and/or extensive simulations are
still needed to fine tune the system parameters to achieve optimal performance. There are many
performance objectives: bandwidth of PLL, signal-to-noise ratio, steady-state tracking error, rise time,
overshoots, etc. Some of these objectives are conflicting. For example, in order to have a high signal-to-



noise ratio, we need a lower bandwidth. However. a lower bandwidth imp1
poor tracking performance. To satisfy all these objectives manually requi
experience. We herein propose a general  multi-objective optimization mett

ies slow rise ILime and hence
res a lot of simulations and
Iod wlhich  can satisfv all theM

performance objectives simultaneouslv even in the presence of nonlinearity such as phase detector in the4 d
system.

The paper is organized as follows. Section 2 will describe the Lyapunov approach to stabilitvJ
analysis of a second-order. PLL. Section 3 will introduce the multi-objective optimization paradigm. ,A
simulation example will be detailed in Section 4 to illustrate the performance of the proposed approach.
Finally, some comments on future research directions will be included in Section ii.

2. Stability Analysis Using Lyapunov Function

2.1 Model of PLL

A general block diagram of an analog PLL is shown below.

input signal

+y--pg-~

Fig. 1 An analog PLL.
Assume the input to the PLL is a sinusoid cos(o,t  + 4) with tii the input frequency and 4 the input
phase and output of the VCO is sin(m$  + w) with ry the phase signal. A phase detector PD is just a
multiplier which produces an output

e(t) = cos(wJ  +&sin@& + w)
1 1

--~sin.(~-~)+$Gl(2ci-lit+~+$f)I (1)

The high-frequency component should be eliminated by using a low-pass filter. The cutoff frequency of.
the filter should be selected around pi. The reason is that we do not want to interfere with the function
of the loop filter. The loop filter acts as controller to the PLL. Its function is to make sure the transient
and steady-state response as good as possible. This filter is usually selected to have the form

s + i!
G(s) = -- (2)

s + a
where a, b are design parameters which control the bandwidth of the loop. The output of the loop filter
provides the control voltage l)(t) for the VCO. The VCO is a sinusoidal signal generator with an
instantaneous phase given by

oit ‘~-- q.t + ICI’ v( T)dZ--cc (3)

with K a constant.
With a proper design of the low-pass filter to filter  out the high-frequency component of the PD,

we can therefore neglect the high-frequency component of the phase detector. Hence we can cast the
PLL into a simpler and equivalent model shown in Fig. 2.

37



Fig. 2 Equivalent model of PLL.

2.2 Stability Analysis of PLL Using Lyapunov function

It should be emphasized that there is a nonlinearity in the system, i.e. the term sin@ - QV) . To
analyze the stability, the conventional way is to linearize the nonlinear term by assuming (4 - ry) is
small. However, in many situation the phase error is not small due to either frequency error or phase
error. To use Lyapunov approach, we first need to convert the system into a state-space model. Defining
E = 4- ly , we can write a model for the system in Fig. 2

i= -ax+O.S(b-a)sinE,
($= -ICC - 0.X sin E . (4)

The state variable x denotes an internal state in the loop filter G(s). Lyapunov approach is a method
which can analyze the internal stability of the system, i.e. the stability of the states. If the states are
stable, then the system will also be stable from the input-output point of view. The very first step of the
analysis begins with the search of a Lyapunov function. This process depends heavily on one’s
experience. In [2], there are quite a number of examples on how to choose a proper Lyapunov function
for a given system. For the PLL system, we choose the following Lyapunov tinction  candidate,

where

[ 1 T
z= x & ,

P
Pl P2-- [ 1P2 P3

is a positive definite matrix. V is a locally positive definite function (1.p.d.f.)  since
(i) V(z)=0 if z = 0, and
(ii) V(z) > 0 if z # 0 for z E B where B is a ball around the equilibrium point z = 0.

There exists a well known theorem from nonlinear system analysis, which states the condition
for system stability.

Theorem: The equilibrium point z = 0 is stable if there exists a continuously differentiable 1.p.d.f.  V such
that

V(z) < 0, Vz EB. (6)



Proofi  See [2].

Thus our objective is to show that the derivative of I’ is negat:ive  for the PLL svstem.d
Differentiating b’ in (5) gives

1 1
Li = sin~&+-?_rp~+-/P--;

2-
= [0.5(b  - L&p;  - 0.5Kp9 - K]x sin I + [ 0.5(@ - a)( ~2~ - 0.5Kp,  ]r sin 6 -

- (u>p,  + Kp, )x’ - Cap2 + Kp,)= (7)
Under the following conditions,

(l)K> 0, b >a
( 2 )  o>p, > - a / b

K- - -(3) P, - @ -al (PI! + 07 P3 = -QP2  f K

it can be seen that

Tci = -0.5Ksin’  I - (ap, + Kp, )s’ + [0.5@ - a)p, - 0.5KpJ~sin  I
<o (9)

since

and
(a-p,  + Kp,) > 0i

[ 0.5(h - a>p, - 0.5Kp,] < 0.

(10)

(I 1)

second
Hence the PLL system is locally asymptotically stable. To extend the case for other types of
-order systems is not difficult and can be achieved following the same route as before.

3. Multi-Objective Optimization Technique for Optimal Loop Performance

The basic idea of the approach is to formulate the PLL design as a constrained optimization
problem. Although there exist some approaches to optimization of PLL using Wiener filters,
tradeoff the bandwidth with the total transient error. The approach that we propose to use is ca 1
objective optimization method. It is more powerful than other methods because it can CC
specifications, including time domain and frequency domain specifications. It can also tak:e in
nonlinear effects of the system.

In PLL, the performance of tracking is judged based on many factors:
(a) steady-state error,
(b) transient response due to a step of phase,
(c) transient response due to a step of frequency,
(d) transient response due to a step of acceleration,
(e) loop behavior in the presence of an angle modulated input signal.

they only
led multi-
nsider all
0 account

. .
Besides these, another important criterion to judge the performance is the signal-to-noise ratio.

These performance criteria are conflicting to one another. For example, if we want to have a fast
transient response, we need a high loop gain. However, a high loop gain impl:ies  a high noise bandwidth
which will reduce the signal-to-noise ratio. Our method can handle time-domain graphical constraints as
well as nonlinear inequality constraints. One example of’graphical constraint is shown in Fig. 3 below.
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Fig. 3 Graphical performance constraints.

The transient performance is constrained by the transient bound shown in Fig. 3. In certain
applications, percentage overshoot cannot be too large. The transient bound provides a upper limit for
the overshoot. The steady-state bound is self-explanatory. Its purpose is to limit the steady-state tracking
error.

The constraint can also be in the form of nonlinear inequality constraint. For example, if we do
not want the noise bandwidth to exceed certain maximum values. We can write a constraint of the form

[ll
1 0.5K+b

B - - K
L-8 0.5K+a

< 50 rudh for a second-order lag-lead loop filter (12)

NOW all the stability and performance constraints can be translated into a set of pdmmmce
objectives (J,(p), I = 1, 2, . . ., m)}, which are chosen such that if Ji (p, ) < Ji (p2 ) then the design
parameter vectorp, is better than the design parameterp 2Y as far as the objective of Ji is concerned. This
set of objectives can be considered to be a vector of objective functions, or a multi-objective function:

J, (P)
J(p) = L 1. . . .

Jm (P)
The performance specification is satisfied if J(p) < c for some positive vector c of “thresholds”

i.e. if Ji (p) < ci for each i, and Ci > 0. To solve the above multiobjective function, there exists some
procedures in the literature [5].

A typical design session proceeds as follows. First of all, we need to specify the constraints, the
loop filter structure (active or lag-lead), the order of the loop filter, bandwidth of the PLL, etc. Then the
simulation tool will simulate the performance through a few iterations. The software will compute
values of the design parameters that improve the satisfaction of the constraints at each iteration. One can
monitor the progress of the optimization by various graphical indicators and response plots.

4. Simulation Studies

We consider a second-order loop with a lag-lead compensator. The loop bandwidth should be
less than 15 rad./s.  The stability constraints are listed in Equations (8), (lo), and (11). The settling time
should be 0.1 second with respect to a step change of frequency of 50 rad./s. The initial parameters are

a=l, b=50,  K=50
After the optimization process, the optimal parameter values are:

a =59.19, b= 126.55, K=50.



In the optimization, we did not change the value ofK since K is directly related to the bandwidth of the
PLL.
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Fig. 4 Performance comparison of optimized and un-optimized PLL.

The performance comparison is shown in Fig. 4 which shows the un-optimized performance with
the optimized performance. Even with the adjustment of two parameters, the performance can make
quite a big difference.

5. Conclusions

A two-step procedure to the optimization of PLL with guaranteed stabilitv is presented in thisI
paper. The first step is to guarantee the loop stability by using the Lyapunov approach. In the process,
parameter ranges (within the range the loop stability is -guaranteed) can be generated. The second step
consists of a multi-objective optimization method that can choose a se; of plarameters  within the
previouslv mentioned parameter ranges to trade-off the loop bandwidth, tracking performance, and
steady-state errors in an optimal fashion. Simulation results show that the proposed method indeed
improves the performance of loop quite significantly.
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