javAPRS

Implementation of the APRS Protocols in Java

Steve Dimse KO4HD
sdimse@bridge.net http://www bridge.net/~sdimse

This paper describes my implementation of the Automatic Position Reporting System (APRS)
protocols in the computer language Java. APRS is one of the most innovative uses of ham radio in recent
years. javAPRS extends the usefulness of APRS to the internet.

Java Basics

Java was designed by Sun Microsystems as a language to promote the use of distributed
computing resources over the intemet. Based on the C language, with an object programming philosophy
drawn from Smaltalk and Lisp, platform independence, and built-in security, it is a language uniquely
suited to network programming.

The principle drawback to the use of Java a present is slow execution speed. Unlike traditional
programs, which are compiled into machine specifichbject code before distribution, Java is compiled
down to byte code which is then interpreted on the local machine, often executing at 10-25% of the speed
of native code. There is reason to be hopeful, however. Severd companies are working on ‘jugt-in-time
compilers, which convert byte code to native code on the loca machine just prior to execution. Also, the
horsepower of today’s computers makes even the interpreted version run at an acceptable speed in most
applications.

The leading use of Java at present is to write programs, called applets, which are run within a
World Wide Web (WWW) browser, such as Netscape. javAPRS can work in this fashion, or as a stand
alone program. Security redtrictions limit some of the interesting possibilities for javAPRS as an applet,
such as using separate servers for map and APRS data, or connecting to multiple other computers to plot

data from multiple LANSs.

javAPRS Design

In the basic design of javAPRS, | have tried to create a system which can be used now by people
without programming knowledge to add APRS data to their web pages. In addition, using the object
oriented programming (OOP) features of Java, the system is designed to be easily extended by other Java
programmers. This sort of extenson does not require access to source code of javAPRS. The interfaces
used by other programs will be posted in my web pages as they are finaized. Source code will not be
freely available, but | will consider requests for the source code on a specific basis. The remainder of this
paper discusses the use of javAPRS in web page crestion. Programmers interested in extending javAPRS
should contact me directly for more info.

javAPRS Applet Parameters

The basic syntax to cal an applet in hypertext markup language (HTML) is:

<APPLET codebase = "javAPRS/" CODE="javAPRS. cl ass" WIDTH=400 HEl GHT =300>

http://www.bridge.net./-sdimse

This executes the applet “javAPRS.class” in the directory “javAPRS” (relative to the HTML file the cal is
found in). It alocates a space of the size indicated in the browser window. Other HTML commands, such
as <CENTER> work just as they would for other graphic elements such asimages. The lines after
APPLET tag consist of a series of parameters which are passed to the applet to control its behavior. Each
parameter has a default value, usually the most commonly chosen option, and if the default parameter is

desired, it need not be declared.

Map Parameters

At this time, javAPRS understands two kinds of maps. One or the other map must be used, or the
applet will not run. The map files are stored in a subfolder “/maps’ relative to the “codebase” named in the

applet call.

"anymap .map" >
"anymap.map">

<PARAM name = "dosMap" val ue
<PARAM name = "gifMap" val ue

Maps can be automatically or manualy scaled.

<PARAM name = "autoScale" value = “true"> (Default true)

This will cause the map to be scaled to fit the window the applet is presently running in. If autoscaling is
not used, then the following three parameters may be used to set the magnification and offset of the map.
For now, the only way to figure out the value of these parameters is trid and error.

“2.0"> (Default 1.0)
"100"> (Default 0)
“100"> (Default 0)

<PARAM hame = "scale" val ue =
<PARAM nane = "offsetX" val ue
<PARAM nane = “"offset¥Y" val ue

Two options work only with dosMaps, namely:

“showMapLabels" val ue = "true"> (default true)

<PARAM halte
"showAllMapLabels" val ue = "true"> (default false)

<PARAM nane

which will show either all map labels or those designated at the present scale.

Data Parameters

Data to be displayed by javAPRS is one of three types, either NMEA (only RMC and GGA are
recognized at present), TNC data (raw data from a TNC which is the MacAPRS log file format), and HST
files produced by dosAPRS. Any or al of the three types of data may be displayed, but only onefile of

each type can be used.

<PARAM hane = "NMEAfile" val ue = "NMEA.data">
<PARAM nane = "TNCfile" val ue = "ko4hd.data">
<PARAM hane = "HSTfile" val ue = "marathon.data">

The way the data is displayed is affected by severd parameters.

<PARAM name = "displayVectors" val ue = "true"> (default true)

 This will draw vectors for course and speed info if present in a postion report.

<PARAM nane = "showCallsigns" val ue = "true"> (default true)

This prints a callsign next to each position report.
<PARAM hane = "stationList" value = "trues">

javAPRS can keep a station list for the stations that are ‘heard’ in the data stream. At the end of a file
readin, the contents are dumped to the java console (select the option “Open Java Console” in Netscape. It
will also speed up the redrawing once the data have been read, only the last position of each station will be

plotted.
<PARAM Nanme = "showNewStatiocns" value = "false'>

If stationList is true, then this option will show the name of each new station as it is heard. If the home
station has been specified, the bearing and distance to the station will aso be displayed.

There are a number of other, less important parameters that are available to fine tune the display to suit the
user. Please refer to my web pages for more details.

javAPRS Sample Applications

The javAPRS classes that exist now alow a person without programming skills to create a World
Wide Web page containing an APRS map, and display a file containing positions of various APRS
dations, objects, and track plots. More complete instructions may be found on my web ste. Here are three
examples, with the HTML code used to cal the applet, and the URL’s to reference them.

10

HST file replay

(http://www.bridge.net/~sdimse/marathon.html)

<APPLET codebase = "javAPRS/" CODE="iavAPRS.class" WIDTH=F 0C HEIGHT =3 50>
<PARAM nane = "dosMap" val ue = "washdc.map">
<PARAM name = "HSTfile" val ue = "marathon.hst">
<PARAM Nan®e = “sleep" value = "50">

<PARAM name = "stationlist" value = "false">
<PARAM nane = "showStationNames" val ue = "fal se">
<PARAM hame = "copyrightTop" val ue = "fal se">
<PARAM name = "scal e" value = "1.6">

<PARAM nane = "offsetx" value = "620">

<PARAM name = "of fsety" value = *310">

</APPLET>

w bridge .net/~sdimse /marathon htm]

S50

S
R

%2
%

CCCCCCEee
0

!)"? e
<<
RRREERSRS,

%
3
5
2
5
2%
]
3

%

o
% K

SRS
G

&5
2

M‘\\\\\\\v\
RIS
R R

£LLLLLs
SO

I

http://www.bridge.net/-sdimse/marathon.html

GIF files for maps

(http://www.bridge.net/~sdimse/gifmap.html)

<APPLET codebase = "javAPRS/" CODE="javAPRS.class" WIDTH=507 HEIGHT =350>

<PARAM name = "gifMap" val ue = "cudjoe.gif">
<PARAM nane = "gifMapLeft" val ue = *81.558">
<PARAM hane = *gifMapTop" val ue = "24.7">
<PARAM hane = "gifMapPPDh" val ue = *3800">
<PARAM name = “gifMapPPDv" val ue = "3900">
<PARAM nane = "sl eep" val ue = "700">

<PARAM hanme = "LLfile” val ue = "boattrip.ll">
<PARAM nane = 'stationlist" value = "false >
<PARAM hane = "copyrightTop" val ue = "false">
</APPLET>

12

http://www.bridge.net/-sdimse/gifmap.html

-
=4

/trip.html)

imse

//www.bridge.net/~sd

Display of TNC data captur

(http

A
=2
-
-
R
[
g !
”..
o
o
g < =
R
i~ % & -
BE
s a
o B I
w @
: w
P2l E
8o o
R 2
;w - 4
T . -
! = b
I g p
= @
O
O on
w =
o] = =
a3 S
‘% onn =
T 2w] 1=
(S SN SN GR > 1=
bos s o5 s 0 g
SR 1~
D= e a 2
R m el bl e
VvV VYV VYV = R

13

http://www.bridge.rieV-sdimseYrip..html)

Future directions

The samples above are static data, and athough there is some degree of animation while the data is
plotted, they could be done just as easily with screen captures and GIF files. Soon | hope to have the
system able to access red time data over the net. This is where javAPRS can fill a unique role. The
possihility exists to incorporate internet connectivity directly into the standalone APRS programs currently
in use, allowing web users to see the data obtained at various APRS stations across the country in resl
time. Also, it would be possible to write a server program, that could be connected to many different
APRS sites and share their data, cresting a nationwide APRS network, no longer limited to 300 baud and
the vagarities of HF propagation. | plan to pursue these plans, and hope to have some results to share by

the 1997 DCC, if not sooner.

14

