
Anatomy of an APRS-IS Server 

(The Evolution ofjavAPRSSrvr and Its Adjuncts) 

In 2002, APRS-IS (APRS on the Internet) was in disarray and bordering on collapse. There were three 
core servers through which every packet in APRS-IS was supposed to pass. first.aprs.net was running 
aprsd on Linux, second.aprs.net was running APRServe on Mac as 9, and third.aprs.net was running 
aprsd on FreeBSD Unix. There were over one hundred non-core servers, most running various versions 
of aprsd and some running AHub. So, what were the critical problems? 

Many problems were interrelated. The core server reliability was less than 1 day of uptime. Packets 
were looping extensively. Many servers and IGates were changing data causing dupe checking 
algorithms to break. IGates were gating mangled packets to the Internet. The data flow had grown to a 
point which was causing many clients to crash or bog down after short connection periods. 

I proposed a new server to attempt to address many of these problems and to try to bring stability to 
APRS-IS. The server had some basic requirements which had to be met if it was going to be of any 
value. It had to support many diverse operating systems since there was little commonality of OS's, 
even at the core. It had to be backwards compatible with existing servers and clients. It could clean 
headers, but the information field of the packet must not be altered in any way. It had to be easily 
modifiable, upgradeable, and expandable. 

Beyond those base requirements, it also had to programmatically promote good network design within 
the constraints of the existing APRS-IS framework. To this end, multiple bidirectional outbound 
connections could not be allowed. Inter-hub connections could be restricted to only allow specified 
servers to interconnect using port 1313. All basic available port types would also need to be supported. 
Even with these restrictions, there would be no mandatory configuration requirements; everything would 
be at the control of the sysop. 

To meet these goals I chose Java as the programming language because it was the only language 
available at the time which could be used across platforms without modification of the application code. 
It also provided certain constructs that would simplify the development and, more importantly, the 
maintenance of the software. The downside was hidden bugs in the various virtual machines, my 
relative inexperience with Java, threading requirements for network operations, and the requirement to 
have the Microsoft JVM and the Apple MRJ limit the highest level of constructs to 1.1.8. As it turned 
out, these limitations actually turned to be an advantage as the evolution ofjavAPRSSrvr occurred. 

The first version ofjavAPRSSrvr was designed to emulate the other servers' port types, support 
APRServe's validation algorithm, clean packet headers, and provide CRC-32 dupe checking. It was 
designed with no fixed configuration parameters so the sysop could emulate any server they wanted. It 
was designed as a console application to ensure cross-platform operation. It also supported a basic text 
status page and full packet logging capability. 

The original design was developed with significant input from Bill Diaz, KC9XG, in the first month and 
more complete discussions with Steve Dimse, K4HG, throughout the first year of development. The 
first version had some bugs. But, it was stable enough for Jon Anhold, N8USK, to take a chance and 

63 



implement it on third.aprs.net. Soon after, Dick Stanich, KB7ZVA, began testing with his second tier 
server, ahubwest.net. One thing that became apparent early on: the Java application was stable, even if 
it was not bug-free. But then, none ofthe other servers were bug-free either. It also became apparent 
that the basic design was sound but there were a number of rough edges that needed to be addressed. 

The original version supported text status ports (normally set to port 14501), no-echo ports, echo ports, 
history ports, and hub ports. The no-echo port type emulates the aprsd port 10152 where packets from 
the client would not be sent back to the client. The echo port does not filter out the client's packets from 
the data stream going to the client, similar to the APRServe port 23. The hub port is an unidirectional 
port designed for server interconnects. It is unidirectional to reduce problems seen with looped packets 
and unorganized massive interconnects. The history port is similar to APRServe and aprsd port 10151. 
However, the javAPRSSrvr history port is unidirectional and only sends the last posit and last object 
seen for each station and object within the last X minutes. It is unidirectional to help prevent stale 
information from being reintroduced into the APRS-IS. 

javAPRSSrvr disables the Nagel algorithm on all network data ports. While this caused many servers 
with limited bandwidths problems (each packet used one IP packet), it soon became apparent that many 
delays in the network were starting to disappear. Because of this, dupe checking started working again. 
This also identified one key component of network delays: bandwidth shaping. We were able to isolate 
numerous instances where bandwidth shaping at the ISP could cause significant (seconds) delays. 

By year end, javAPRSSrvr was very stable and requests had started to flow for different types of ports. 
Greg Noneman, WB6ZSU, sysop for second.aprs.net had migrated to javAPRSSrvr. The sysops for 
ahubca.net and ahubeast.net had migrated to javAPRSSrvr. Steve Dimse had migrated to javAPRSSrvr 
for use on findu.com. And there were others. The big allure, if you could call it that, of j avAPRSSrvr is 
its stability, flexibility, and the ability to run it on almost any operating system. 

At this point, a short review of the architecture ofjavAPRSSrvr is in order. First, javAPRSSrvr is not 
open source, but it is free to any ham who wishes to use it for amateur related activities. I decided at the 
start to not make it open source primarily for support issues. As it has turned out, I think this has been a 
very beneficial decision since I can keep a close eye on the architecture and can rapidly respond to bug 
reports, etc. 

javAPRSSrvr has a thread for each port it listens on, a thread for each outbound connect procedure, and 
a thread for packet processing. This last thread runs between all of the read threads and the write threads 
for each connection. As with any multithreaded application, synchronization has always been a concern. 
Also, certain JVM's have restrictions on the number of threads that anyone application can have. 

Why not have each receive thread put the packet on each transmit thread's queue? This turned out to be 
a decision forced upon us by certain OS/JVM combinations. Specifically, we saw significant stack and 
synchronization problems with the Linux JVM's. Those problems went away with the introduction of a 
"go between" thread to do the packet decoding, dupe checking, and placing on the transmit queues. As 
it turned out, having this go-between thread has some other benefits such as enabling server adjunct and 
IGate adjunct interfaces. 

During the later part of 2002, Dale Heatherington, WA4DWY, and I got together via email and created 
the q algorithm. Dale was becoming active in aprsd development again and we were looking for a 
generic way to track loops as well as to identify different network components, such as servers and 

64 



IGates. What we came up with added about 5% overhead (if you take into account IP overhead) on each 
packet that gave us rudimentary loop detection (this is how I discovered the flaw in how 
hubAndMsgPorts works) as well as network device identification. It has proven its worth over and over 
again in simplifying troubleshooting on APRS-IS. 

At the end of 2002, I was contacted by Roger Bille, SM5NRK, concerning the possibility of adding 
server-side filtering. Bandwidth was at a premium, clients were running slow or crashing because of the 
quantity of data being sent, and sysops were looking for ways to cut down their visibility to the 
backbone providers. I was reluctant, but since Roger was volunteering to write the code, I worked with 
him to create a generic interface into javAPRSSrvr. 

Roger came up with an additive filter (instead of taking things out of the data stream, it would say what 
to pass) that works very well. The generic interface (ServerAdjunctInterface) started as a simple 2 
prong approach: one where all non-dupe packets get pre-processed and the other prong where each 
individual port processed the packet. While this worked, there was unnecessary overhead (most packets 
getting parsed twice). So, we reworked ServerAdjunctInterface so the adjunct would receive a packet 
with the header already parsed by javAPRSSrvr and then the adjunct could return an Object for use later 
on with the individual send threads. This greatly reduced overhead, both in CPU and in memory. 

Since the filter is additive, filtering is only applied to restricted ports. At the time, that was the 
msgOnlyPorts and the clientOnlyPorts. Demand quickly added filteredHistoryPorts and readOnlyPorts 
(unidirectional filtered ports). We started to see problems with message acks not getting through. After 
some research, I added IGatePorts which was derived from clientOnlyPorts, but added a recently heard 
list to help ensure proper messaging. 

I was also asked to add IPv6 and multicast capability. Fortunately, IPv6 only required a minor 
parameter format change as Sun implemented it within the standard socket architecture. I added 
multicast send-only capability for people to experiment with. So far, I am only aware of Gerry Creager, 
N5JXS, making use of either of those capabilities. 

The year of 2003 was mostly involved with bug fixes and adding minor features such as keep-alive 
comment lines, login comment lines, etc. That in addition to adding the filteredHistoryPorts, 
readOnlyPorts, IGatePorts, and multicastPorts. There was a lot of work done on improving 
javAPRSSrvr and working around various OS/JVM problems. 

With the year 2004, a request came from the FireNet sysops to see about implementing something so 
they would not need to run two servers. They wanted the filtering capability ofjavAPRSFilter, but they 
needed a way to take packets in and send them back out to local ports only. So I developed the 
10calOnlyPorts. With that port type, there became a need for a modified hubPorts which would also 
pass local data. This was added as 10calHubPorts. 

There continue to be many bug fixes and minor feature enhancements (sometimes the latter cause the 
former to be needed). We determined earlier this year (2004) that the hubAndMsgPorts were a source 
for loops and would possibly explain why aprsd was showing so many loops early on since the 
hubAndMsgPorts type was implemented to mirror aprsd's port 1313. Because of this discovery, 
hubAndMsgPorts have been removed fromjavAPRSSrvr. 

65 



As I write this paper, I have introduced three new adjuncts to javAPRSSrvr. The most recent is 
javAPRSDB. This is a server adjunct which allows support for other server adjuncts. It populates an 
SQL database with posits, tracking information, and weather information. It is used on www.jfindu.net 
to maintain that database. It is also used in conjunction withjavAPRSFilter so a single server 
application provides both the database filling and the live APRS-IS feed. 

The other two adjuncts are javAPRSIGate and javAPRSDigi. javAPRSDigi is an adjunct to 
javAPRSIGate and I will discuss that later in this paper. javAPRSIGate required the addition of a new 
interface, IGateAdjunctInterface, to javAPRSSrvr. This was added (like ServerAdjunctInterface) in two 
basic passes, release 1 and release 2. Release 2 was designed to simplify the interface and make it more 
reliable, which it has done. I avoided making an IGate until now because I wanted to maintain OS 
independence injavAPRSSrvr. I achieved that, to a degree, with the design ofjavAPRSIGate as 
TNClnterface is open source, just like ServerAdjunctlnterface and IGateAdjunctInterface. 

To get as independence, I created a TNClnterface which allowed me to create interfaces for three 
primary TNC interfaces: AGWPE, KipSS, and Linux ax25 support. Roger Bille added direct KISS 
support for Linux and Windows. There may be other OS's in the future. 

javAPRSIGate is a full-featured IGate allowing the sysop excellent flexibility in configuration. It 
supports smart maximum hop determination (including UIFlood and UITrace algorithms). It supports 
unidirectional (to APRS-IS) as well as bidirectional gating. 

javAPRSDigi goes between the javAPRSIGate TNClnterface and the actual TNC interface. It provides 
full alias substitution, full UIFlood, and full UITrace operation. It also enforces RELAY in the first 
position of a path. It supports a maximum hop "tum-off switch" which allows the sysop to dictate what 
packets get repeated and which ones don't. 

This brings us to where javAPRSSrvr is today. Has it met its goals? I propose that it has and continues 
to do so. It is running on multiple OS's and multiple JVM's, in over 75 locations throughout the world. 
The number of sysops continues to grow because the program "works as advertised". It does not modify 
packet data; it computes dupe checks not only on what may be normal, but also on what may be 
mangled packets (have you noticed the decline in Mic-E conversion packets); it supports every port type 
that has been presented; it continues to have new functionality added as well as any bugs fixed as they 
are reported; most importantly, APRS-IS has stabilized with its introduction to the network. 

To help prevent the loss of support for javAPRSSrvr and its adjuncts caused by a sudden catastrophe to 
either Roger Bille or me, we keep the other author's code in escrow. Since Roger is in Sweden and I am 
in the United States, this makes for very good insurance which we both hope will never be needed. 

73, 

Pete Loveall AE5PL 

66 


