
97

Experiments with Delay and Disruption Tolerant
Networking in AX.25 and D-Star Networks

John Ronan, EI7IG
Telecommunications Software &

Systems Group
Waterford Institute of Technology

Cork Road, Waterford, Ireland
Email: jronan@tssg.org

Kristian Walsh
Telecommunications Software &

Systems Group
Waterford Institute of Technology

Cork Road, Waterford, Ireland
Email: kwalsh@tssg.org

Darren Long, G0HWW
Bury St. Edmunds

England.
Email: darren.long@mac.com

Abstract

This paper examines the performance of DTN bundling layers against native protocols for radio data network
with a view to possible deployment for emergency communications purposes. The authors conducted experiments
with an existing DTN convergence layer in both AX.25 point-to-point and D-Star multi-hop communications
links with hidden transmitters. The experimental results show that the DTN system exhibits marginally better
performance than TCP/IP, appears to perform better where there are hidden transmitters, and has a more compact
link utilisation pattern than TCP/IP. However, situations where obvious improvements can still be made were
also identified.

Index Terms

Disruption Tolerant Network, Delay Tolerant Network, DTN, AX.25, D-Star

I. INTRODUCTION

At the 2008 TAPR DCC, [1] briefly introduced Delay/Disruption Tolerant Networking, and cited the
work of this paper’s authors. This paper provides more detail about the authors’ ongoing work with
delay- and disruption-tolerant networking.

The experiments made use of the DTN2 reference implementation [2], a flexible software framework
for experimentation, extension and real-world deployment of Delay Tolerant Networking (DTN) systems.
We have taken this framework and used it to produce a Convergence Layer (CL) for the AX.25
networking protocol. (For D-Star testing, the TCP-CL Reference Implementation was used).

The ultimate goal is to produce a usable, delay-tolerant substitute for existing digital emergency
communications systems.

As our AX.25 CL testing was with 1200 baud AX.25 links, it seemed sensible to determine the over-
head incurred by the use of DTN, and how a DTN solution compared to existing transfer mechanisms.

The D-Star testing was with Icom ID-1 D-Star radios. Both TCP/IP over D-Star and DTN-CL over
D-Star were tested, in both point-to-point and multi-hop configurations.

II. DTN OVER AX.25, POINT-TO-POINT

A. DTN Convergence Layer Implementation

The AX.25 Connected Mode Convergence Layer (AX25CM-CL) is a convergence layer implemen-
tation for AF AX25 SOCK SEQPACKET sockets on the Linux platform.

The AX25CM-CL transports the DTN “bundles” described by RFC-5050 [3] directly over an AX.25
connection that operates solely as a Layer 2 protocol. In this respect, the AX.25 CL is similar to the
existing Bluetooth-CL.



98

Currently, the only major difference between the AX.25 CL and the TCP-CL Protocol is that the
AX.25 implementation is extended to include a 32-bit CRC appended to each TCP-CL Protocol segment.
This is necessary in order to ensure that any corruption of AX.25 KISS [4] data frames can be detected,
as well as providing additional means to detect protocol errors introduced by the implementation.

This CRC was added as, during early testing using two Linux PC’s and sound-modems, it was found
that occasionally, corrupt frames were received which crashed the receiving DTN daemon. This also
happened (though rarely) when testing commenced with hardware TNCs.

The TCP-CL and the AX25CM-CL share commonality provided by the ConnectionConvergenceLayer
base class. Supporting classes providing the interface to AF AX25 SOCK SEQPACKET sockets are
provided as an extension to the DTN2 oasys library.

1) Capabilities and Limitations: The AX25CM-CL code has been in active development since
January 2007, when it was first branched from the TCP-CL and oasys support classes. Currently,
the AX.25 CL allows for point-to-point links between two peers, and also paths containing a single
non-DTN digipeater, for an AX.25 connected mode link.

As of yet, no announcement or discovery mechanism has been implemented and thus links must be
manually configured and initiated.

B. Theoretical Performance of AX.25 Links

In assessing the performance of the DTN implementation, it was useful to consider the theoretical
performance limits of the underlying data transport. In this case, that transport is AX.25.

1) Experimental settings: Table I lists the significant parameters of the experimental AX.25 link.

TABLE I
CHARACTERISTICS OF EXPERIMENTAL TRANSFER

parameter value
link speed, bit/s 1200
Tslot, s 0.020
Ttxdelay , s 0.150
Ttail, s 0.020
p 0.250
data length, bytes 7182

2) Model Transfer times: To examine the performance of the AX.25 link, a “best case” model
was created by using the timings from the AX.25 specification and inserting the characteristics of the
experimental link. Transfer times on AX.25 networks have a small probabalistic component, as a random
delay is used for congestion control. To minimise the effect of congestion on the experimental results,
a point-to-point link was used. The probabilistic factor, p, was set to 0.251, which entails an average
delay of 0.25Tslot to each transmission. We endeavoured to calculate best case values for transfer times
given different window maxframe sizes.

Tframe, the transmission time for one data frame is obtained using the following formula:

Tframe =
(bytes × 8.004) + 160

(bitrate)

where 160 is the number of bits comprising the AX.25 preamble, header, check sequence, and end-
of-frame marker.

1this was achieved by setting the persist value to 64 out of a maximum value of 255



99

The value 8.004 is used to take into account the additional bits stuffed into payload data octets with
the value 01111110. Assuming a uniformly distributed payload byte values, such extra bits will occur
on average once in every 256 octets.

Each acknowledgement is a single transmission of a frame with zero payload bits. Allowing for
transmission setup and release times, Tack, the average time required to send an acknowledgement is:

Tack = Ttxdelay +
160

bitrate
+ Ttxtail + p × Tslot

The number of acknowledgements sent depends on maxframe, the acknowledgement window size
for the link. Also, where a maxframe of greater than 1 is chosen, the transmitter is allowed to send
multiple data frames in one transmission, which eliminates all but one set of Ttxdelay and Ttxtail delays.

As each acknowledgement window of data packets is sent in a single transmission, and each such
transmission will generate one acknowledgement, the following formula for transmission time of a
message containing frames number of data frames can be easily derived:

windows = Ceiling(
frames

maxframe
)

Tmessage = frames × Tframe

+ windows × (Ttxdelay + Ttxtail + p × Tslot + Tack)

For a window size of 1, each packet requires an acknowledgement, which will negatively affect the
throughput of the link. The half-duplex nature of the physical link used means that acknowledgement
frames incur a very high cost as each transmission, be it a single frame, or a group of frames, must
also include the initial settling period, Ttxdelay to allow the transmitter to stabilise before data can be
sent.

Using the experimental parameters in Table I, we calculated frame transmission time for a transfer
of n 255-byte frames as follows. First, the transfer time for a single frame, without link stabilisation or
release delays, Tframe, is determined, as this is constant regardless of window size:

Tframe =
(255 × 8.004) + 160

1200
= 1.933971

Tack, the time required to send an acknowledgement, is also constant for all window sizes:

Tack = Ttxdelay +
160

bitrate
+ Ttxtail + p × Tslot

= 0.150 +
160

1200
+ 0.25 × 0.020

= 0.308

Using these values, and formula for Tmessage, previously, the values in Table II were obtained. It should
be noted that these figures represent a theoretical peak performance of the link, and do not account
for collisions, interference2 or the delay incurred by the transfer of data between the host system and
from the TNC devices over RS-232 [5] serial interfaces. Because the model did not take account of
these additional overheads or the time required to process higher-level protocol commands, none of the
experimental results were expected to reach this level of performance.

2great care was taken to monitor the frequency for any interference during the tests



100

TABLE II
THEORETICAL MINIMUM TRANSFER TIMES, RAW AX.25 TRANSFER

Window timings from
size model
1 67.2
2 60.4
3 58.0
4 57.1
5 56.1
6* 55.6
7* 55.6

* values are the same for window sizes of 6 or 7 as both settings will
generate only 5 acknowledgement frames for a 7182-byte transfer

C. AX.25 Experimental Network

1) BBS and KISS mode: File transfer tests were performed using the onboard BBS software on the
TNCs, and also by placing the TNC equipment into KISS mode. KISS mode was required for FTP and
DTN transfers.

2) Network: Figure 1 shows the experimental network used to measure the system performance.

Half-duplex radio channel

SOURCE
DESTINATION

MONITOR

TNC TNC

TNC

Fig. 1. Experimental setup used to measure AX.25 performance. Source and Destination devices were connected on a single RF data
channel (i.e., half-duplex)

As the AX.25 TNCs and transmitters used for Source and Destination nodes were not identical,
transfers were performed in both directions in an effort to minimise the effects of using different
equipment. One side used a SCS PTCIIex TNC, connected to a Yaseu FT-847. The other used a KPC3+
TNC and a Yaesu FT-1500M transmitter.

A third integrated transceiver and TNC (Kenwood TH-D7 in KISS mode) was used to monitor the
radio channel to log all transmitted AX.25 frames and allow the for the measuring of transfer times.

To obtain a valid set of readings, five transfers of the candidate test file were completed for each
setting of the AX.25 window parameter (maxframe). These readings were then combined using a
simple average in order to give an indicative time for the given window setting.

The test file used contained 7182 bytes of ASCII-encoded text data. For BBS mode tests, this data
file was pre-loaded into the source TNC’s built in Bulletin Board System (BBS) server.

For testing of the linux AX.25 implementation, we used a combination of ax25d (part of the Linux
AX25 [6] subsystem) to respond to the AX.25 connection request, and uronode [7] to deal with the
connection itself. The axmail [8] program was used to access a local SMTP mailbox to which the test
file had been pre-loaded.

When it came to testing using TCP/IP [9] [10], both TNCs were first configured into KISS mode and
then the Maximum Transmission Unit (MTU) and window sizes were set according to Table III on the



101

Linux host before each transfer was begun. Transfer of the file data for TCP/IP tests was performed
using FTP.

TABLE III
TCP/IP TEST SETTINGS

Window Size MTU TCP Window
1 255 255
2 255 510
3 255 765
4 255 1020
5 255 1275
6 255 1530
7 255 1785

For the DTN test, The dtncp utility was used command to send the file from source to destination.
Obviously the application-layer protocols used by the ftp, axmail and dtncp tools all add their own

small amount of overhead to the file transfer (above that already added by AX.25). However, it was
considered to be valid to include this in the final results, as the amount of additional data is quite small
in relation to the file being transferred, and will be representative of “real world” usage.

III. DTN OVER D-STAR, POINT-TO-POINT AND MULTI-HOP

A. Convergence Layers
For D-Star testing, both the reference TCP/IP Convergence Layer and the NACK-Oriented Reliable

Multicast (NORM) based CL [11] were used to investigate DTN performance. NORM was chosen
for examination in response to research done by [12] which indicated that NORM would be suited to
multi-hop wireless DTN links.

B. Experimental Network
Figure 2 shows the experimental network used to measure the system performance. Each node in the

network was operated by an ICOM ID-1 transciever. The devices marked “Source” and “Destination” had
no direct visibilty to each other: a deliberate arrangement to investigate the effect of hidden transmitter
interference.

Half-duplex radio channel

SOURCE
DESTINATION

RELAY

D-Star
D-Star

D-Star

MONITOR

Fig. 2. Experimental setup used to measure D-Star DTN performance.

As for the AX.25 testing, five transfers of the test data were performed and the times obtained were
averaged. FTP and dtncp were used for plain TCP and DTN transfers respectively.



102

Dynamic routing was disabled in the test network, to avoid routing broadcasts interfering with transfer
times.

IV. RESULTS

Tables IV and V list the results obtained for transfers between the two TNC devices. Table VI lists
the results from the D-Star transfers, for path lengths of one and two hops.

TABLE IV
PTCIIEX READING FROM KPC3+

average transfer times in seconds for window sizes from 1 to 7

Win. KPC3+ Both TCP/
size BBS KISS KISS IP DTN

1 119.2 75.0 75.6 146.0 84.6
2 87.2 65.0 67.0 104 75.8
3 86.2 60.6 61.6 99.8 73.8
4 86.2 59.6 * 63.0 98.4 † 72.0
5 86.2 57.6 58.4 97.2 † —
6 86.2 57.0 * 60.2 97.6 † —
7 86.2 57.2 * 61.0 95.8 † —

model
67.2
60.4
58.0
57.1
56.1
55.6
55.6

* receiver timeout on last frame group ; †window sizes above 3 are not honoured, see section V-A2.

TABLE V
KPC3+ READING FROM PTCIIEX

Win. PTCIIex Both TCP/
size BBS KISS KISS IP DTN

1 76.6 76.2 76.2 173.2 85.8
2 65.0 65.0 67.0 104.2 75.6
3 61.4 62.0 62.0 98.8 74.8
4 59.6 59.8 * 63.2 97.2 † 71.25
5 58.2 58.6 59.6 96 † —
6 57.8 58.0 * 60.8 95.8 † —
7 57.6 57.6 * 61.6 95.2 † —

model
67.2
60.4
58.0
57.1
56.1
55.6
55.6

* receiver timeout on last frame group ; †window sizes above 3 are not honoured, see sectionV-A2.

TABLE VI
D-STAR PERFORMANCE

Hops FTP TCP DTN TCP DTN NORM
point to point 193.6 190.2 184.0

2 hops 418.8 * 412.8 — †
* individual results exhibited high deviation from this mean — see section V-B1 ; †NORM measurements not possible for two-hop

network.

V. DISCUSSION

A. AX.25 point-to-point
1) Overhead of DTN: Overall, the performance of the DTN layer was acceptable, and disproved the

authors’ “gut instinct” which suggested a much greater overhead from using DTN bundling. While a



103

full set of measurements could not be obtained, the CL implementation shows considerable promise,
and comfortably out-performs TCP/IP.

2) Problems with large window sizes on AX.25: Tables IV and V are missing readings for window
sizes (AX.25 maxframe parameter) above 4. This is because of a bug which was discovered during
testing. On the fifth consecutive run with maxframe set to 4, the AX.25 implementation in the host
computer appeared to enter an unstable condition: instead of obeying the chosen maxframe setting,
the source unit flooded the receiver with all 29 frames of the data transfer, causing a breakdown in flow
control for both source and destination.

The fact that, once manifested, this behaviour persisted across all subsequent runs of the DTN test
would suggest that a the Linux kernel AX.25 implementation itself is partially responsible for the
problem.

3) Over-Acknowledgement: Currently, the AX25CM-CL produces a flurry of (TCP-CL Protocol)
segment ACK messages (one for each segment/frame) and sends these as distinct frames. (Figure 3) A
more conservative approach to ACK generation would be prudent, by aggregating more than one ACK
into a frame and/or adopting a selective ACK mechanism. The first approach (aggregating multiple ACKs
into a single frame) should in theory already happen, but doesn’t in practice: further investigation may
required to discover the root cause of this.

This problem could be minimised by deferring the first AX.25 acknowledgement in such a manner
that it is sent in the frame containing the DTN (or TCP) acknowledgement message.

SOURCE DESTINATION

AX25(DATA)

DTN CL AX.25

DATA

DTN CL

DATA

AX25-ACK(DATA)

DTN-ACK(DATA)

AX25(DTN-ACK(DATA))

DTN-ACK(DATA)

AX25-ACK

AX.25

Fig. 3. Multiple acknowledgements produced by the DTN CL

4) AX.25 Acknowledgement timeouts: The “Both KISS” entries in Tables IV and IV contain some
anomalous timings, marked with an asterisk. Following investigation of the logs, it was discovered that
these are due to the message transfer ending with a window containing only one or two frames. In these
cases, the receiver does not send an acknowledgement immediately, but instead waits to see if any more
frames arrive that would fill the window. As no such frames follow, the receiver times out (AX.25 T2
or resptime timer), and acknowledges what it has received.

5) Firmware bottleneck in KPC3+: The “BBS” column in Table IV shows for window sizes above
3 frames, the TNC’s own firmware was the bottleneck to data transfer. Using KISS mode on this
device shows a marked improvement. The testing was done with a KPC3+ and version 8.3 (KPC3P-
7ADC9125-8.3) of the firmware. A brief loan of a KPC3+ with version 9.1 of the firmware was obtained.
It performed much better in this test averaging 72 seconds with maxframe set to 7, but it still is much
slower than either the PTCIIex or KISS mode.

B. DTN/D-Star



104

1) Variability of FTP performance: From the average figures shown in table VI, it would appear that
the DTN transfer is faster than using FTP, albeit only marginally. However, the raw measurement data
taken for FTP multi-hop transfers exhibits a higher standard deviation than that for the DTN (FTP: σ =
51 seconds, versus σ = 21 seconds for DTN). Examination of the packet logs for the FTP tests shows
that the most likely cause for this was indeed hidden transmitter interference, as destination and source
nodes attempted to simultaneously send to the relay node.

Deviation in DTN results was much less random, and would suggest a that there is a fixed-interval
polling mechanism at work within the DTN stack: some transfers were relayed almost immediately,
others incurred a delay of up to 20 seconds.

2) NORM on multi-hop networks: Unfortunately, the authors encountered difficulties in getting
the NORM software to operate for more than one network hop. While this is probably due to a
configuration issue, time pressures prevented more detailed investigation. The results for NORM on
point-to-point transfers show that it is significantly faster than either TCP or the existing DTN over
TCP implementation.

3) Link Utilisation: One interesting aspect of the DTN implmentations was their link utilisation
pattern. Figure 4 compares the traffic observed for DTN and FTP. Because of bundling, the DTN
transfer does not make use of the link between hop 1 and 2 until all of the data has been transferred
from source to hop 1. In contrast, the FTP transfer produces traffic on both segments for the duration
of the transfer.

SOURCE DESTINATION

DATA

ACK

RELAY

DATA

DATA

DATA

DATA

Link Available

Link Available

DATA

ACK

DATA

DATA

DATA

DATA

(a)

SOURCE DESTINATION

DATA

ACK

RELAY

DATA

DATA

DATA

DATA

DATA

ACK

DATA

DATA

DATA

DATA

(b)

Fig. 4. Link utilisation patterns: (a) DTN, (b) FTP. (TCP flow control has been omitted from both diagrams)

It should be noted that, all other factors being equal, neither DTN nor FTP will use more of the
available link capacity; however, the DTN implementation uses each link in a more compact fashion.

C. Bundle integrity in the AX.25 CL
In [13] the authors highlight issues of lack of checksum for error detection with bundles, and bundle

integrity is a big issue in the current DTN architecture. Without using bundle security mechanisms,
there is no built-in error detection (or correction) mechanism available at the bundle layer.

This has two major ramifications.
• Bad bundles can crash the Bundle Protocol daemon (in our case dtnd), or
• Bundles can be delivered to their destination as if they were valid data
As an illustration of the effect of corrupt data on dtnd, in early experiments with Prophet router [2], a

byte-order issue in the Prophet code was able to bring down an entire dtnd network. One of the authors
used a PowerPC-equipped computer (big-endian) to connected to a DTN running with Intel and ARM



105

devices (little-endian) machines. As soon as the PowerPC node transmitted Prophet routing data, all
other dtnd instances in the network crashed. While this isn’t an example of the lack of error detection—
in this case error detection may not have caught the problem— it does, however, illustrate the problems
posed by malformed data being ingested into dtnd instances.

The classic end-to-end principle [14] used in the Internet stresses the importance of eliminating in-
memory corruption in routers. In a DTN, the storage of data for later retransmission raises the risk of
corruption in secondary storage (disks,etc) too, as well as the obvious risk of corruption on error-prone
links.

However, the big problem for bundle integrity in a DTN is the possibility of reactive or proactive
bundle fragmentation within the network. If either form of fragmentation occurs, determining the
integrity of bundle fragments in the network middle is likely to be impossible, and in all likelehood,
could only be achieved at the ultimate destination, when de-fragmentation occurs.

The knock-on effects of corrupt bundles in a DTN makes it imperative that CLs adopt a robust
error detection scheme in order to ensure that the bundles (or bundle fragments) they pass up to the
bundling agent are confirmed to be error free. Robust error checking provides the earliest opportunity to
solicit a retransmission of corrupted bundles or bundle fragments in the CL itself. Note that this doesn’t
solve the actual problem, as in memory or storage corruption may still occur (undetected), and as in
the end-to-end argument, ultimate responsibility for integrity checking must reside with the endpoint
applications. However, if custody transfer is being used, it would seem to be a major disadvantage if a
prospective bundle custodian isn’t able to confirm the integrity of the bundle which it is requested to
take into its custody.

The issues that were experienced within the earlier implementaions of the AX25 CL resulted in two
types of behavior. The first, benign behaviour caused TCP-CL protocol messages to be determined to be
invalid, which in turn caused the CL link to be dropped (and subsequently re-established, if viable). The
second type of behaviour resulted in the entire dtnd service crashing! After adding a CRC32 checksum
to each TCP-CL segment, the AX25 CL now detects malformed TCP-CL segments and terminates the
connection3, and assuming that the connection will be restablished and transfer will be attempted again,
if connectivity permits. There may still be a residual bug associated with this - which manifests itself
as a stuck socket, but the authors have made no progress investigating this issue

The issue of bundle integrity is a more difficult one than it appears at first inspection, and it still is not
clear how the often conflicting requirements (network transport neutrality versus confidence in bundle
integrity) can be easily reconciled. The author’s approach is to effectively ignore the entire problem at
the bundle protocol level, but implement a robust AX25 CL in order to at least ensure that it didn’t
exacerbate the problem or take down the node’s dtnd service.

VI. CONCLUSION

The prototype AX.25 DTN CL performs well, considering its early stage of development. However,
bugs remain in the implementation that could be addressed to further improve performance.

The measurements taken provide an illustration that, even without considering robustness in the face
of disruption, the ubiquitous TCP/IP protocol is not always the best choice.

Measurements on D-Star transfers show a slight performance benefit for DTN on point-to-point links,
and also on multi-hop transfers. However, the underlying measurements taken for multi-hop transfers
show a high standard deviation, due to interference from other transmitters. In light of this variance, we
cannot say with confidence that the DTN transfer would always be faster than FTP, but its performance
was certainly comparable.

3the rationale being that to send malformed packets, the sender must have been placed in an undefined state, one which a complete
reset of the connection may resolve



106

Moving from the TCP convergence layer to the UDP-based NORM convergence layer provided an
increase in point-to-point performance over both FTP and the TCP-CL. Unfortunately, difficulties in
performing multi-hop tests using NORM prevented the authors from obtaining useful measurements for
this configuration.

One interesting outcome of using DTN for multi-hop transfers was that the DTN transfers exibited
more compact utilisation of each link. In a multi-channel network, this could yield greater network
utilisation. In cases where expensive time-billed point-to-point links are deployed (e.g., satellite phone),
the use of DTN rather than straight TCP could give rise to considerable cost savings.

VII. FUTURE WORK

Although only briefly examined for this paper, the NORM convergence layer showed promise, and
would be worthy of further investigations. Of particular interest would be investigating the performance
of NORM in larger multi-hop networks.

The experimental results obtained for multi-hop DTN over D-Star show a considerable variance due
to “hidden transmitter” interference (all three nodes shared the same channel). More testing will be
required to determine whether the TCP or DTN transfers are more susceptible to this effect.

The AX.25 CL is still a work in progress, and more work will be required to bring it to mainstream
use. Techniques from the NORM convergence layer could also be applied to the AX.25 CL to reduce
the number of acknowledgements generated by the AX.25 CL.

Finally, the instability in the face of invalid data highlights the need for more robust error checking, and
possibly error correcting, techniques for DTN. Investigation of these techniques is certainly warranted.

REFERENCES

[1] F. Brickle, “A brief introduction to delay tolerant networking,” in 27th ARRL and TAPR Digital Communications Conference. 225
Main Street, Newington, CT 06111-1494, USA: ARRL, 2008, pp. 6–8.

[2] “Delay tolerant networking research group - code,” http://www.dtnrg.org/wiki/Code.
[3] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050 (Experimental), Internet Engineering Task Force, Nov. 2007.

[Online]. Available: http://www.ietf.org/rfc/rfc5050.txt
[4] M. Chepponis and P. Karn, “The KISS TNC: A simple Host-to-TNC communications protocol,” in 6th Computer Networking

Conference. 225 Main Street, Newington, CT 06111-1494, USA: ARRL, 1987.
[5] “Eia standard rs-232-c interface between data terminal equipment and data communication equipment employing serial data

interchange,” August 1969.
[6] “LinuxAX25,” accessed on 2009-01-02. [Online]. Available: http://www.linux-ax25.org/wiki/LinuxAX25
[7] “Uronode,” accessed on 2009-01-02. [Online]. Available: ftp://ftp.uroweb.net/pub/ax25/
[8] “axMail,” accessed on 2009-01-02. [Online]. Available: ftp://ftp.uroweb.net/pub/ax25/
[9] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard), Internet Engineering Task Force, Sep. 1981, updated by RFCs

1122, 3168. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt
[10] ——, “Internet Protocol,” RFC 791 (Standard), Internet Engineering Task Force, Sep. 1981, updated by RFC 1349. [Online].

Available: http://www.ietf.org/rfc/rfc791.txt
[11] “NACK-Oriented reliable multicast,” accessed on 2009-07-20. [Online]. Available: http://cs.itd.nrl.navy.mil/work/norm/
[12] C. Rigano, K. Scott, J. Bush, R. Edell, S. Parikh, R. Wade, and B. Adamson, “Mitigating naval network instabilities with disruption

toler,” in Military Communications Conference, 2008. MILCOM 2008. IEEE, Nov. 2008, pp. 1–7.
[13] L. Wood, W. M. Eddy, and P. Holliday, “A bundle of problems,” in IEEE Aerospace Conference. IEEE, 2009.
[14] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,” 1984.


