
114

Comparing 2-Meter Packet Radio

Data Unicasts and Multicasts

Paul D. Wiedemeier, Ph.D., KE5LKY

Assistant Professor of Computer Science

The University of Louisiana at Monroe

Computer Science and Computer Information Systems Department

College of Business Administration

700 University Avenue, Monroe, Louisiana 71209

318-342-1856 (Work) or 318-396-1101 (Fax)

wiedemeier@ulm.edu or KE5LKY@arrl.net

Abstract

Fairs, concerts, marathons, and festivals are public events where the local amateur radio club often

assists the sponsoring organization(s) by providing communication services. These celebrations

however, can be tarnished if a parent cannot find their child or a child cannot find their parent(s).

During such situations, one site orally broadcasts the description of the child to all other sites

participating a directed network. Unfortunately, oral descriptions can be ambiguous. A solution would

be to transmit a digital image of the child along with the oral description. If all sites participating in a

directed network have packet radio stations, then an optimal data transmission method would be for one

site to transmit the digital image to all other sites simultaneously. This type of transmission is referred

to as multicast and our data show that multicast file transfer tools should be used by the amateur radio

community when transmitting digital data, imagery or otherwise.

Key Words

Packet Radio, Unicast, Multicast, Pure-FTP, Udpcast, Digital Image, and ASCII File.

115

Introduction

Many cities throughout the United States host annual festivals, etc. that hundreds or thousands of people

from the community attend. Often, the local amateur radio club assists the sponsoring organization(s)

by providing communication services. However, two potentially dangerous situations can occur during

these celebrations; (1) a parent cannot find their child (i.e. missing child) or (2) a child cannot find their

parent(s) (i.e. lost child). In either situation, it is imperative for network control (NC) to facilitate the

quick dissemination the child’s description to other sites participating in the directed network. Figure 1

shows a written description of a hypothetically missing or lost child and his associated image.

Figure 1: Written description of a hypothetically missing or lost child and associated digital image.

Unfortunately, the problem with any oral or written description is that it can be ambiguous. A solution

would be to transmit a digital image of the missing or lost child along with the oral description, because,

as is often said, “A picture is worth a thousand words.” The implementation of this solution, however,

requires that each site participating in the directed network have access to a packet radio station,

consisting of a computer, a terminal node controller, and a transceiver.

Figure 2: An assumed four site directed network.

If packet radio stations are available, then let us assume a directed network with four sites; “Site 1”,

“Site 2”, “Site 3”, and “NC”. Let us also assume that a missing or lost child is reported at “Site 1”.

B. Multicast

2

3 1

Site 1

Site 2

Site 3

NC

A. Unicast

1

1 1

Site 1

Site 2

Site 3

NC

Male child; name Connor; age 3; light brown hair;

hazel eyes; approximately 39 inches tall and 40

pounds in weight. Connor is wearing a blue

baseball cap, a green shirt, a blue sweatshirt, blue

jean shorts, white socks, and blue tennis shoes.

116

Using traditional packet software (e.g. Winlink 2000 and AirMail), “Site 1” would transmit the digital

image of the child to “NC”, “Site 2”, and “Site 3” in three separate transmissions. This type of

transmission, shown in Figure 2A, is referred to as unicast (Wiedemeier, 2008) and each of the three

unicast transmissions are labeled with a number that specifies the order of transmission. Here, the order

of transmission is not important. What is important, however, is that three individual unicast

transmissions are required before all sites receive a copy of the digital image.

An optimal data transmission method would be for “Site 1” to transmit the digital image of the child to

“NC”, “Site 2”, and “Site 3” simultaneously. This type of transmission is referred to as multicast

(Wiedemeier, 2008) and is shown in Figure 2B. Given that both unicast and multicast can be used to

transmit the digital image of the child, the purpose of this paper is to compare the transmission of digital

data using Pure-FTP, a unicast file transfer tool, and Udpcast, a multicast file transfer tool. Our data

show that Udpcast performs better than Pure-FTP. Thus, we argue that multicast file transfer tools

should be used by the amateur radio community when transmitting digital data, imagery or otherwise.

In the following “2-Meter Packet Radio Stations” section, we discuss how two 2-meter packet radio

stations were configured and used to obtain unicast and multicast file transmission times. In the

“Udpcast File Transfer Tool” section, we discuss how to multicast data using Udpcast. We also list the

specific Udpcast command line arguments we used to obtain instantaneous bandwidths and how

Microsoft Excel 2007 was used to compute multicast transmission times. In the “Pure-FTP File

Transfer Tool” section, we discuss how we used Pure-FTP to obtain unicast transmission times.

In the “Digital Files” section, we discuss the structure of the 4 KB, 8 KB, and 16 KB files utilized for

our unicast and multicast research. The “Results” section compares the unicast transmission times

obtained by Pure-FTP against the multicast transmission times computed using average instantaneous

bandwidth generated by Udpcast. The “Conclusions” section re-caps what we discussed in the “Result”

section and lists future research we intend to conduct.

2-Meter Packet Radio Stations

To conduct our research, we utilized two identically configured 2-meter packet radio stations located on

the campus of The University of Louisiana at Monroe. Each packet radio station consisted of a Dell

OptiPlex GX240 personal computer, a Kenwood TM-271A 2-meter transceiver, a Kantronics KPC-3

Plus terminal node controller, and a Diamond X30A antenna. Power was supplied by an Astron SS-30

power supply and distributed by a West Mountain Radio RigRunner 4005. See Figure 3.

We installed Fedora Linux Core 8 on both Dell OptiPlex GX240 personal computers and configured

their AX.25 network interfaces (Tranter, 2001) (Jones, 1996) to transmit and receive data using the

Amateur Packet Radio Network (i.e. AMPRNet) “testing” IP addresses 44.128.*.*. Specifically, we

used the IP addresses 44.128.2.1 and 44.128.2.2. For a thorough discussion of how the personal

computers used in this research were configured, please refer to (Wiedemeier, 2008). Specifically,

Figures A1-A7 in the appendix of (Wiedemeier, 2008) show the Bourne shell scripts and Unix

commands we used to configure the personal computers.

Additionally, we configured three commands within the Kantronics KPC-3 Plus terminal node

controllers. The paclen command was set to 0 (e.g. 256 Bytes). The frack command was set to 7

and the maxframe command was set to 7. We refer the reader to the Kantronics KPC-3 Plus User

117

Guide (Kantronics, 2005), which provides a thorough discussion of all terminal node controller

commands.

The Kenwood TM-271A transceivers were configured to transmit and receive data at the transmission

rate of 1200 bits per second (bps) using the frequency 145.010 Megahertz (MHz) (Kenwood, 2009).

Because both transceivers were located within ten to fifteen feet of each other in the same room, their

transmit power levels were set to low.

Figure 3: Configuration of a 2-meter packet radio station.

Udpcast File Transfer Tool

The Udpcast software is freely available and easily installed on personal computers running the Fedora

Linux operating system using the administration software management tool. The Udpcast software can,

however, be downloaded from the website http://udpcast.linux.lu/ and installed on other

Unix/Linux operating systems. A version of Udpcast also exists for the Microsoft Windows operating

system. A thorough discussion of the Udpcast file transfer tool is provided by (Wiedemeier, 2008). For

our research, we used the Udpcast sender and Udpcast receiver Unix commands shown in Figure 4.

Figure 4: The Udpcast sender and Udpcast receiver Unix commands.

Because the Udpcast file transfer tool multicasts data asynchronously, the Udpcast sender adds forward

error correction to the data stream. This allows the Udpcast receiver to correct any data that may be

corrupted during transmission. The amount of forward error correction the Udpcast sender adds to each

file transmission is based on five factors; (1) file size, (2) block size, (3) interleave (i.e. I – the number of

stripes), (4) redundancy (i.e. R – the number of additional stripes to transmit), and (5) stripe size

(i.e. S – measured in blocks). For specific information about the Udp sender –-fec (forward error

udp-sender --file FILETOSEND –-interface INTERFACE –b BLOCKSIZE

 --async –-fec IxR/S –-max-bitrate BPS –-log LOGFILE

 --bw-period SECONDS

udp-receiver --file FILETORECEIVE --nosync --interface INTERFACE

LMR400

Cable

12V DC

Cable

12V DC

Cable

12V DC Cable

Packet

Cable

Serial

Cable Dell

OP GX240

WMR

RR-4005

Kenwood

TM-271A

Astron

SS-30

Kantronics

KPC-3 Plus

Diamond

X30A

145.010 MHz

44.128.2.*

IP Addresses

118

correction) command line argument the reader should refer to (Knaff, 2005 and 2006). In the following

paragraphs, we will briefly describe how forward error correction is computed.

The smallest unit of data that the Udpcast sender transmits during file transmission is a slice and each

file transmitted is divided into one or more slices. The size of a slice (i.e. slice size in blocks) is

computed by multiplying the interleave by the stripe size (i.e. slice size = I x S blocks). Udpcast

requires that the slice size be greater than or equal to 16 blocks but less than or equal to 1024 blocks

(i.e. 16 blocks <= slice size = I x S <= 1024 blocks). Additionally, the interleave must be less than or

equal to 8 (i.e. I <= 8) and the stripe size must be less than or equal to 128 (i.e. S <= 128).

Given that the smallest slice size the Udpcast sender will transmit is 16 blocks and the block size we use

for our research is 256 Bytes (i.e. from the terminal node controller paclen command), then the

smallest file the Udpcast sender could transmit is 4 Kilobytes (KB). That is, the Udpcast sender

transmits a single slice of size 16 blocks. In this instance, the product of the interleave and stripe size

(i.e. I x S) must equal 16.

Table 1: Udpcast command line argument associated values.

File

Size

Block

Size

Band

Width

FEC

(IxR/S)

Number

of

Blocks

Slices

Transmitted

Percent File

Redundancy

FEC

in

Bytes

Bytes

Transmitted

4

KB

256

Bytes

1200 bps

1x1/16

16 1

6.25% 256 4,353

1x2/16 12.5% 512 4,608

1x4/16 25% 1,024 5,120

1x8/16 50% 2,048 6,144

1x16/16 100% 4,096 8,192

8

KB
1200 bps

1x1/16

32 2

6.25% 512 8,704

1x2/16 12.5% 1,024 9,216

1x4/16 25% 2,048 10,240

1x8/16 50% 4,096 12,288

1x16/16 100% 8,192 16,384

16

KB
900 bps

1x1/16

64 4

6.25% 1,024 17,408

1x2/16 12.5% 2,048 18,432

1x4/16 25% 4,096 20,480

1x8/16 50% 8,192 24,576

1x16/16 100% 16,384 32,768

For this research, we chose to transmit files of size 4 KB, 8 KB, and 16 KB. A 4 KB file was selected

because it represents the minimum size that can be transmitted by the Udpcast sender given a 256 Byte

119

block size. The 16 KB file was selected because it is four times the size of the 4 KB file and we desired

to minimize the overall transmission time to around 10 minutes. We selected the 8 KB file because it is

twice the size of the 4 KB file, but half the size of the 16 KB file.

The first four columns in Table 1 show the file size, block size, bandwidths, and forward error correction

(FEC) we used for the research presented in this paper. The values shown were used as arguments to the

--file, -b, --max-bitrate, and --fec Udp sender command line arguments shown in Figure 4.

What is not shown in Figure 4 are the values for the three Udp sender command line arguments

--interface, --log, and –-bw-period, which were ax0, logfile.txt, and 5

(e.g. 5 seconds) respectively.

As stated earlier, the file sizes we used were 4 KB, 8 KB, and 16 KB. The block size we used was

256 Bytes because this represented the maximum paclen value that could be set for the terminal node

controllers. The maximum bandwidth we used to transmit the 4 KB and 8 KB files was 1200 bps

because, as was stated earlier, the transceivers were set to transmit data at 1200 bps. We found,

however, through trial and error, that the maximum bandwidth that would support a 16 KB file multicast

was 900 bps. Due to the asynchronous nature of Udpcast, we hypothesize that multicast transmissions

are more vulnerable when large files are transmitted using a low transmission rate of 1200 bps,

regardless of the amount of forward error correction added to the transmission. More research into this

anomaly, however, is needed.

The interleave, redundancy, and stripe size values that we used to multicast data were 1x1/16, 1x2/16,

1x4/16, 1x8/16, and 1x16/16. We could have used the interleave, redundancy, and stripe size values

2x1/8 instead of 1x2/16, as both represent a 12.5% file redundancy. However, we found that computed

multicast transmission times using interleave, redundancy, and stripe size values 2x1/8 and 1x2/16 for

all file sizes were similar to the whole part of a decimal number. Additionally, by using a value of 16

for stripe size (i.e. S) we were able to obtain a 6.25% file redundancy (e.g. with interleave, redundancy,

and stripe size values 1x1/16).

Figure 5: Our method for obtaining data multicast transmission times.

In Table 1, the last five columns, starting with column “Number of Blocks”, display values that are

computed using values from the first four columns. The “Number of Block” column displays the

number of blocks associated with a specific file size and is the quotient of a file size numerator and a

block size denominator. The “Slices Transmitted” column displays the number of slices transmitted for

a particular file size and is the quotient of a number of blocks numerator and a denominator of I x S

(i.e. the product of interleave and stripe size). The “Percent File Redundancy” column displays the

amount of forward error correction added to the transmission as a percentage of the file size and is a

quotient of a redundancy (i.e. R) numerator and a stripe size (i.e. S) denominator. The “FEC in Bytes”

Transmission

Time
Five Files

Five

Instantaneous

Bandwidths

Udpcast Sender Microsoft Excel 2007

Udpcast Receiver

Average

Instantaneous

Bandwidth

120

displays the number of bytes of forward error correction that will be transmitted and is the product of

file size and percent file redundancy. The “Bytes Transmitted” column displays the total number of

bytes transmitted for a give file size and is the sum of file size and forward error correction.

Overall, using Udpcast, we transmitted the 4 KB, 8 KB, and 16 KB files five times for each of the

interleave, redundancy, and stripe size combinations shown in Table 1. Because Udpcast is an

asynchronous data multicast tool (Wiedemeier, 2008), neither the Udpcast sender nor the Udpcast

receiver generate a file transmission time. However, the Udpcast sender will record an instantaneous

bandwidth value in a log file if the –-log LOGFILE command line argument is specified. See

Figure 4.

Figure 6: Mathematical equation used to compute Udpcast file transmission times.

Figure 5 shows the method we used to multicast five files, generate five instantaneous bandwidths,

compute an average instantaneous bandwidth, and compute a transmission time. Specifically, the

Udpcast sender transmits, using the interleave, redundancy, and stripe size values shown column 4 in

Table 1, a 4 KB, 8 KB, or 16 KB file to the Udpcast receiver five times. We then used the wc (e.g. file

word count) and diff (e.g. file difference) Unix command on the Udpcast receiver personal computer

to verify that the file received was correct. The five instantaneous bandwidths were then recorded in a

Microsoft Excel 2007 spreadsheet. Using the five instantaneous bandwidths, an average instantaneous

bandwidth was computed. The associated transmission time was computed using the equation shown

in Figure 6. The Bandwidth variable from the equation shown in Figure 6 represents the average

instantaneous bandwidth computed by the Microsoft Excel 2007 spreadsheet shown in Figure 5.

Pure-FTP File Transfer Tool

Similar to Udpcast, Pure-FTP is freely available software and easily installed on personal computers

running the Fedora Linux operating system using the administrative software management tool. The

Pure-FTP software can be downloaded from the website http://www.pureftpd.org/ and

installed on other Unix/Linux operating systems. Additionally, a version of Pure-FTP exists for the

Microsoft Windows operating system. Note that FTP is a standard computing acronym for File Transfer

Protocol.

Pure-FTP, as are all FTP file transfer tools, is comprised of two parts: a client and a server. To connect

to a remote FTP server and upload or download files, one would use the Pure-FTP client. Using the

FTP client, users who have accounts on the FTP server can then upload files to or download files from

the server. Likewise, an anonymous FTP server can be configured to allow anonymous (e.g. guest)

users to upload files to or download files from the anonymous FTP server.

After installing and configuring Pure-FTP servers on the personal computers associated with our packet

radio stations, we used the Pure-FTP client on one personal computer to connect anonymously to the

Pure-FTP server on the other personal computer using the AX.25 network interface discussed earlier.

BlockSize

FECFileSize
Delay

Bandwidth

BlockSize
onTimeTransmissi *

8*

121

We then retrieved each of the 4 KB, 8 KB, and 16 KB files ten times. During file retrieval, the

Pure-FTP server displays the clock time at which each file retrieval occurred and the total time in

seconds required to retrieve the file. For each file retrieved by the FTP client, the file was verified to be

correct by comparing it against a “correct” file within the FTP client’s file system using the wc and

diff Unix commands.

Figure 7: Our method for obtaining data unicast average transmission times.

The ten transmission times generated by Pure-FTP when transmitting the 4 KB file were recorded in a

Microsoft Excel 2007 spreadsheet. An average transmission time was then calculated. The ten 8 KB

and 16 KB files transmission times generated by Pure-FTP were also recorded in the same

Microsoft Excel 2007 spreadsheet and then averaged. See Figure 7.

Digital Files

As discussed earlier in this paper, we chose to conduct our unicast and multicast research using files of

size 4 KB, 8 KB, and 16 KB. If we use the digital image of the child shown in Figure 1 and adjust the

number of pixels in the image and the overall image quality, then we generate the three images shown in

Figure 8. Unfortunately, none of the three images shown in Figure 8 is exact with respect to the stated

size. All are slightly smaller than the size indicated. They are, however, representative of what one

would expect a digital image to represent using a specific file size and pixel size.

Figure 8: Digital images of a missing or lost child. Each is smaller than the listed size.

B. 8 KB File Size

 384x384 Pixels

C. 16 KB File Size

 512x512 Pixels
A. 4 KB File Size

 256x256 Pixels

Ten Files

Ten

Transmission

Times

Pure-FTP Client Microsoft Excel 2007
Average

Transmission

Time

Pure-FTP Server

122

To obtain files with the “exact” sizes of 4 KB, 8 KB, and 16 KB for our research, we created three

ASCII text files, each containing 4,096, 8,192, and 16,384 ASCII characters respectively. Because of

their exact sizes, we use the three ASCII files instead of digital images when conducting our research.

Results

The times generated by Udpcast and Pure-FTP, when each transmitted the 4 KB, 8 KB, and 16 KB files,

are shown in Tables 2 and 3 respectively and plotted in Figure 9. From the data, we see that Udpcast

transmits the 4 KB, 8 KB, and 16 KB files, using 6.25% - 50% file redundancies, in less time than

Pure-FTP for 1, 2, and 3 file transmissions. Specifically, we see from Tables 4, 5, and 6, and Figures 10,

11, and 12 that Udpcast, using 50% file redundancies, transmits the 4 KB and 8 KB files 45% faster than

Pure-FTP for 1 file transmission. Udpcast, using 50% file redundancy, transmits the 16 KB file 25%

faster than Pure-FTP for 1 file transmission. When the percent file redundancies decrease

(i.e. 25%, 12.5%, and 6.25%), Udpcast performs even better than Pure-FTP for 1 file transmission. To

compute the percentage amount that Udpcast is faster than Pure-FTP we subtracted the Udpcast

transmission time from the Pure-FTP transmission time and then divided the difference by the Pure-FTP

transmission time.

Table 2: Udpcast average instantaneous bandwidths and associated modeled transmission times.

File

Size

FEC

(IxR/S)

Percent File

Redundancy

Bytes

Transmitted

Average

Instantaneous

Bandwidth

Transmission

Time in Seconds

4 KB

1x1/16 6.25% 4,353 1021 34.087

1x2/16 12.5% 4,608 962 38.320

1x4/16 25% 5,120 861 47.573

1x8/16 50% 6,144 712 69.034

1x16/16 100% 8,192 528 124.121

8 KB

1x1/16 6.25% 8,704 993 70.137

1x2/16 12.5% 9,216 937 78.710

1x4/16 25% 10,240 840 97.559

1x8/16 50% 12,288 697 141.019

1x16/16 100% 16,384 520 252.256

16

KB

1x1/16 6.25% 17,408 732 190.186

1x2/16 12.5% 18,432 692 213.241

1x4/16 25% 20,480 622 263.536

1x8/16 50% 24,576 516 380.839

1x16/16 100% 32,768 386 679.042

123

From the data, we see also that Udpcast transmits the 4 KB and 8 KB files in less time, using 100% file

redundancy, than Pure-FTP for 1, 2 and 3 file transmission. Again, we see from Tables 4, 5, and 6, and

Figures 10, 11, and 12 that Udpcast, using 100% file redundancies, transmits the 4 KB file 1.73%,

50.86%, and 69.24% faster than Pure-FTP for 1, 2, and 3 file transmissions respectively. Udpcast, using

100% file redundancies, transmits the 8 KB file 2.11%, 51.06%, and 67.37% faster than Pure-FTP for 1,

2, and 3 file transmissions respectively.

Udpcast also transmits a 16 KB file, using 100% file redundancy, in less time than Pure-FTP for 2 and 3

file transmission. We see from Tables 4, 5, and 6, and Figures 10, 11, and R4 that Udpcast, using 100%

file redundancies, transmits the 16 KB file 33.58%, and 55.72% faster than Pure-FTP for 2, and 3 file

transmissions respectively.

However, Pure-FTP transmits a 16 KB file in a single transmission in less time than Udpcast, using

100% file redundancy. Specifically, from Tables 4, 5, and 6, and Figures 10, 11, and 12 we see that

Pure-FTP transmits a 16 KB file in a single transmission 24.72% faster than Udpcast. To compute the

percentage amount that Pure-FTP is faster than Udpcast we subtracted the Pure-FTP transmission time

from the Udpcast transmission time and then divided difference by the Udpcast transmission time.

We hypothesize the reason why Pure-FTP transmits a 16 KB file in a single transmission in less time

than Udpcast, using 100% file redundancy, is based on the actual number of bytes each file transfer tool

transmits. From Table 3, we see that Pure-FTP transmits 18,944 Bytes for each 16 KB file transmitted

once. This Byte count represents sixty-four 256 Byte data packets (i.e. blocks) and their associated

40 Byte acknowledgement packets. Udpcast, using 100% file redundancy, transmits 32,768 Bytes for

the same 16 KB file (i.e. 16 KB file and 16 KB forward error correction). See Table 2. Essentially,

Udpcast transmits the 16 KB file twice and overall transmits 13,824 more Bytes than does Pure-FTP.

Table 3: Pure-FTP average transmission times.

File Size

Number of File

Transmissions Bytes Transmitted

Average Transmission

Time in Seconds

4 KB

1 4,736 126.300

2 9,472 256.600

3 14,208 378.900

8 KB

1 9,472 257.700

2 18,944 515.400

3 28,416 773.l10

16 KB

1 18,944 511.200

2 37,888 1,022.400

3 56,832 1,533.600

124

Figure 9: Udpcast and Pure-FTP file transmission times.

Table 4: Udpcast percent faster than Pure-FTP for the 4 KB file.

File

Size

Udpcast

Percent File

Redundancy

Pure-FTP

(1 File

Transmission)

Pure-FTP

(2 File

Transmissions)

Pure-FTP

(3 File

Transmissions)

4 KB

6.25% 73.01% 86.51% 90.00%

12.5% 69.66% 84.83% 89.89%

25% 62.33% 81.17% 87.44%

50% 45.34% 72.67% 81.78%

100% 1.73% 50.86% 67.24%

0

200

400

600

800

1000

1200

1400

1600

4KB 8KB 16KB

T
ra
n
sm

is
si
o
n
T
im

e
in
S
e
co
n
d
s

File Size

Pure FTP (3 File

Transmissions)

Pure FTP (2 File

Transmissions)

Pure FTP (1 File

Transmission)

Udpcast 100% File

Redundancy

Udpcast 50% File

Redundancy

Udpcast 25% File

Redundancy

Udpcast 12.5% File

Redundancy

Udpcast 6.25% File

Redundancy

125

Figure 10: Udpcast percent faster than Pure-FTP (1 File Transmission).

Table 5: Udpcast percent faster than Pure-FTP for the 8 KB file.

File

Size

Udpcast

Percent File

Redundancy

Pure-FTP

(1 File

Transmission)

Pure-FTP

(2 File

Transmissions)

Pure-FTP

(3 File

Transmissions)

8 KB

6.25% 72.78% 86.39% 90.93%

12.5% 69.46% 84.73% 89.82%

25% 62.14% 81.07% 87.38%

50% 45.28% 72.64% 81.76%

100% 2.11% 51.06% 67.37%

40%

20%

0%

20%

40%

60%

80%

100%

4KB 8KB 16KB

P
e
rc
e
n
t
fa
st
e
r
th
a
n
P
u
re

F
T
P
(1

F
il
e
T
ra
n
sm

is
si
o
n
)

File Size

Udpcast 6.25% File

Redundancy

Udpcast 12.5% File

Redundancy

Udpcast 25% File

Redundancy

Udpcast 50% File

Redundancy

Udpcast 100% File

Redundancy

Pure-FTP is
24.72% faster than

Udpcast

126

Figure 11: Udpcast percent faster than Pure-FTP (2 File Transmissions).

Table 6: Udpcast percent faster than Pure-FTP for the 16 KB file.

File

Size

Udpcast

Percent File

Redundancy

Pure-FTP

(1 File

Transmission)

Pure-FTP

(2 File

Transmissions)

Pure-FTP

(3 File

Transmissions)

16 KB

6.25% 62.80% 81.40% 87.60%

12.5% 58.29% 79.14% 86.10%

25% 48.45% 74.22% 82.82%

50% 25.50% 62.75% 75.17%

100% -32.83% 33.58% 55.72%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4KB 8KB 16KB

P
e
rc
e
n
t
fa
st
e
r
th
a
n
P
u
re

F
T
P
(2

F
il
e
T
ra
n
sm

is
si
o
n
s)

File Size

Udpcast 6.25% File

Redundancy

Udpcast 12.5% File

Redundancy

Udpcast 25% File

Redundancy

Udpcast 50% File

Redundancy

Udpcast 100% File

Redundancy

127

Figure 12: Udpcast percent faster than Pure-FTP (3 File Transmissions).

Conclusions

From the data shown in Tables 2 and 3 and plotted in Figure 9, it is clear that Udpcast, when using

100% file redundancy or less, transmits the 4 KB, 8 KB, and 16 KB files in less time than Pure-FTP for

2 or greater file transmission. We argue that that if one must transmit a file to two or more locales, it is

best to use Udpcast. Even if you must transmit a file to one locale, Udpcast transmits the 4 KB, 8 KB,

and 16 KB files in less time than Pure-FTP for file redundancies 6.25% - 50%. That is, if the

communication channel is relatively error free, then Udpcast performs better than Pure-FTP in all

instances.

We should note that the transmission times obtained using Pure-FTP, and Udpcast for that matter,

occurred when no other local packet traffic was present. That is, the overall bit error rate associated

with the communication channel would be considered zero during transmission. If packet traffic, other

than ours (e.g. competing packet traffic), were present when we attempted to unicast data using

Pure-FTP, then the resulting transmission times would have been larger than those shown in Table 3.

This is because Pure-FTP utilized the “connection-oriented” Transmission Control Protocol (TCP),

which uses acknowledgement packet to signify that a packet arrives correctly and retransmission when a

packet arrives corrupt. As such, we would expect that Pure-FTP transmission times would increase

when channel competition occurs because the number of packets retransmitted would also increase.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4KB 8KB 16KB

P
e
rc
e
n
t
fa
st
e
r
th
a
n
P
u
re

F
T
P
(3

F
il
e
T
ra
n
sm

is
si
o
n
)

File Size

Udpcast 6.25% File

Redundancy

Udpcast 12.5% File

Redundancy

Udpcast 25% File

Redundancy

Udpcast 50% File

Redundancy

Udpcast 100% File

Redundancy

128

Thus, if channel competition were to occur, Pure-FTP would generate transmission times worse than

those shown in Table 3. How much more the transmission times generated by Pure-FTP would increase

depends on the bit error rate when the transmission occurred.

In contrast to Pure-FTP, Udpcast utilizes the “connection-less” User Datagram Protocol (UDP) and

incorporates forward error correction to overcome any instances where channel competition generates

corrupt packets. Thus, if channel packet competition exists, Udpcast transmission times would remain

the same because the amount of forward error correction added by Udpcast is independent of the

communication channel’s bit error rate. As such, the transmission times shown in Table 2 would not

change, even if the communication channel’s bit error rate was non-zero.

We have identified three future research projects associated with this research. First, we intend to

investigate the anomaly discussed in “Udpcast File Transfer Tool” section of this paper. Specifically,

we will investigate how much Udpcast sender instantaneous bandwidth decreases as file size increases.

Second, we intend to investigate the transmission of files using unicast and multicast, but substitute

70-centimeter transceivers in place of the 2-meter transceivers. Given that the 70-centimeter

transceivers will allow us to transmit data at a maximum rate of 9600 bps, we also intend to transmit

files larger than 16 KB.

Last, using the data discussed in this paper and the data generated from the project discussed in the

previous paragraph, we will attempt to define a mathematical equation that can be used estimate Udpcast

instantaneous bandwidths for faster transmission rates (e.g. fast packet transmission rates 19,200 bps,

38,400 bps, 76,800 bps, and up). By using this new mathematical equation and the one shown in

Figure 6, we will be able to model data multicast over proposed fast packet radio networks.

Acknowledgements

The author graciously thanks Allison M.D. Wiedemeier, Ph.D., for reading the first draft of this paper.

The author’s research is supported through funds provided by the Clarke M. Williams, Jr. Endowed

Professorship in Computer Science sponsored by The University of Louisiana at Monroe Foundation,

and The University of Louisiana at Monroe Digital Communication Research Laboratory.

References

Jones, Greg (Ed.) (WD5IVD). (1996). Packet Radio: What? Why? How? Articles and Information on

General Packet Radio Topics. Tucson, AZ: Tucson Amateur Packet Radio Corporation Publisher.

Kantronics, Incorporated. (2005, September 9). KPC-3 Plus User Guide. Retrieved July 28, 2009, from

http://www.kantronics.com/documents/kpc-3plus_manual_RevD.pdf.

Kenwood USA, Incorporated. (2009). Kenwood TM-271A Instruction Manual. Retrieved July 28, 2009,

from http://inform3.kenwoodusa.com/Manuals%5CTM-271.pdf.

Knaff, Alain. (2005, May 14). Udpcast Commandline Options. Retrieved July 28, 2009, from

http://udpcast.linux.lu/cmd.html.

Knaff, Alain. (2006, March 20). “Multicasting over satellite”. Udpcast Forums. Retrieved July 28, 2009,

from http://udpcast.linux.lu/pipermail/udpcast/2006-March/000493.html.

129

Tranter, Jeff (VE3ICH). (2001, September 19). Linux Amateur Radio AX.25 HOWTO. Retrieved July

21, 2009, from http://tldp.org/HOWTO/AX25-HOWTO/.

Wiedemeier, Paul (KE5LKY). (2008, September). “Using Udpcast to IP Multicast Data over Packet

Radio Networks”. (pp. 94-105). Proceedings of the 27th ARRL and TAPR Digital Communications

Conference.

Biography

Dr. Paul D. Wiedemeier is an Assistant Professor of Computer Science at The University of Louisiana at

Monroe (ULM) and the principle investigator of the ULM Digital Communication Research Laboratory.

Dr. Wiedemeier obtained a Ph.D. in Computer Engineering and Computer Science from the University

of Missouri – Columbia, a M.S. in Computer Science from Michigan Technological University, and a

B.S. in Computer Science from Drake University. He is a member of the Institute of Electrical and

Electronics Engineers, the Association for Computing Machinery, the Amateur Radio Relay League, the

Tucson Amateur Packet Radio Corporation, the Consortium for Computing Sciences in Colleges, and

the Louisiana Academy of Sciences. Dr. Wiedemeier also holds a Technicians Amateur Radio License

(KE5LKY) issued by the United States of America Federal Communications Commission.

