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Abstract—Previously the authors gave an overview of
a Delay Tolerant Network Convergence Layer implemen-
tation that operates over Connected Mode AX.25, and
detailed the results of some performance tests using it to
transfer data over Amateur Radio channels. These results
were compared to both a native AX.25 and a TCP/IP-
over-AX.25 implementation. The investigation of TCP/IP
was undertaken because, while it is generally accepted
that TCP is unsuited to wireless links, it has become the
dominant protocol in real-world applications, with over
50% of internet traffic now accounted for by TCP over
port 80 [1].

As some issues were highlighted in experiments leading
to the authors’ prior publication, these have been worked
on and have been largely resolved. It was also found that
our model for an ideal AX.25 communications channel
had deficiencies, so a correction is offered. Additionally,
we also tested our Convergence Layer alongside a TCP/IP
over AX.25 implementation on both a 1200 and 9600 baud
point-to-point link and give comparative results between
our Convergence Layer implementation and TCP/IP.
Real-world behaviour of the data link still diverges from
the model, but the authors provide some possible reasons
for this.

Keywords-Disruption tolerant networking; Internet-
working; Packet radio networks; TCPIP; Transport Pro-
tocols

I. INTRODUCTION

Previously, the authors gave an overview of
a Delay Tolerant Network (DTN) Convergence
Layer (CL) implementation which was under de-
velopment [2]. This was developed as a Conver-
gence Layer in the DTNRG’s DTN2 reference
implementation on the Linux platform using its
AX.25 stack.

During our testing we found some issues
with our AX.25 Connected Mode Convergence

Layer (AX.25CM-CL) implementation and we
have worked to fix those and improve efficiency.

We proposed that the use of DTN over AX.25
as an alternative may allow for a more ad hoc,
self-configuring network to be created [2].

Due to the low transmission speed of AX.25
links (typically 1200 bits-per-second) we compared
our AX.25CM-CL and TCP/IP to an ideal AX.25
model. Since then we have improved the efficiency
of the AX.25CM-CL, adjusted the TCP/IP param-
eters for better performance, and also corrected a
mistake in our model of an “ideal” AX.25 link.

II. DTN CONVERGENCE LAYER

IMPLEMENTATION

The DTN2 reference implementation is provided
as a flexible software framework for experimenta-
tion, extension and real-world deployment of Delay
Tolerant Networking systems [3]. We have taken
this framework and used it to produce a Conver-
gence Layer for the AX.25 networking protocol.

The AX.25CM-CL is a convergence layer imple-
mentation for AX.25 sockets on the Linux platform
which transports the DTN “bundles” described by
RFC-5050 [4] directly over an AX.25 connection
that operates solely as a Layer 2 protocol. In this
respect, the AX.25CM-CL is similar to the existing
Bluetooth CL.

Currently, the only major difference between the
AX.25CM-CL and the TCP-CL [5] Protocol is that
the AX.25 implementation is extended to include
a 32-bit CRC appended to each TCP-CL Protocol
segment. This is necessary in order to ensure that
any corruption of AX.25 KISS [6] data frames
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can be detected1, as well as providing additional
means to detect protocol errors introduced by the
implementation.

A. Capabilities and Limitations

The AX.25CM-CL code has been in active de-
velopment since January 2007, when it was first
branched from the TCP-CL and Oasys support
classes. Currently, the AX.25CM-CL allows point-
to-point links between two peers, and also paths
containing a single repeater operating at the AX.25
link layer.

At time of writing, no announcement or dis-
covery mechanism had been implemented and
therefore links have to be manually configured
and initiated. However, it has been accepted into
the reference implementation. It is envisaged that
existing announcement and discovery mechanisms
could be adapted to work within the framework of
the AX.25 Protocol.

III. AX.25 THEORETICAL PERFORMANCE

In assessing the performance of the DTN im-
plementation, it is useful to consider the theoretical
performance limits of the underlying data transport.
In this case, that transport is the AX.25 Link
Access Protocol for Amateur Packet Radio [7], a
data link layer protocol derived from the ITU-T
X.25 data link protocol [8] with modifications for
use by Amateur Radio operators.

A. Experimental settings

Table I lists the significant parameters of the
radio link used in these experiments as in our
previous paper.

TABLE I
CHARACTERISTICS OF EXPERIMENTAL TRANSFER

parameter value

link speed, bit/s 1200

Tslot, ms 20

Ttxdelay , ms 150

Ttail, ms 20

p 0.250

data length, bytes 7182

1In theory corruption should not happen, but it does in practice.

While we have kept these the same as in our
previous paper. It should be noted that using the
Kenwood radios, with built in radio modems, it is
possible to reduce the Transmit delay, Ttxdelay to
100ms and still maintain a reliable connection.

B. Model Transfer times
AX.25 is most commonly deployed on half-

duplex radio links, with link access managed using
a p-persist CSMA algorithm [9] [10]. Transfer
times on such networks have a small probabilistic
component, as a random delay is used for Media
Access control. To minimise the effect of collisions
on the experimental results, a point-to-point link
was used on an unused UHF frequency, and the
frequency was continually monitored for any other
users during the running of all tests. The proba-
bilistic factor, p, was set to 0.25, which entails an
average delay of 0.25Tslot to each transmission.
Tframe, the transmission time, in seconds, for

one data frame is obtained using the following
formula:

Tframe =
63

62
× (bits) + 160

(bitrate)

where 160 is the number of bits comprising the
AX.25 preamble, header, check sequence, and end-
of-frame marker.

As in HDLC, a zero is inserted after every five
consecutive “ones” in order to make sure that there
is no ambiguity about the location of delimiters
which have the value 01111110. Such an extra bit
will occur on average every 62 bits [11].

Each acknowledgement is a single transmission
of a frame with no payload. Allowing for trans-
mission setup and release times, Tack, the average
time required to send an acknowledgement is:

Tack = Ttxdelay +
63

62
× 160

bitrate
+ Ttxtail + p× Tslot

The number of acknowledgements sent depends
on the acknowledgement window size for the link,
maxframe: where a maxframe of greater than
1 is chosen, the transmitter is allowed to send
multiple data frames in one transmission, which
eliminates all but one set of Ttxdelay and Ttxtail

delays in each group of maxframes frames, as
illustrated in Figure 1(b).
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As each acknowledgement window of data pack-
ets is sent in a single transmission, and each such
transmission will generate one acknowledgement,
the following formula for transmission time of
a message containing frames number of data
frames can be easily derived:

windows = Ceiling(
frames

windowsize
)

Tmessage = frames× Tframe

+ windows×
(Ttxdelay + Ttxtail + p× Tslot + Tack)

t

txdelay txtail

t

txdelay

DATA 1

(a) Window Size = 1

(b) Window Size = 3

Ack DATA 2 Ack

DATA 1 DATA 2 DATA 3

txtail

Ack

t

Fig. 1. Effect of increased window sizes on link efficiency.

For a window size of 1, each packet requires an
acknowledgement, which will negatively affect the
throughput of the link. The nature of the physi-
cal link used means that these acknowledgement
frames incur a very high cost. On a radio data
link, each transmission, be it a single frame, or
a group of frames, must also include an initial
period of time, Ttxdelay to allow the transmitter to
stabilise before data can be sent. Figure 1 shows
how increasing the window size can reduce the
amount of time required to send data.

Using the experimental parameters in Table I, we
calculate the frame transmission time for a transfer
of n 255-byte frames as follows. First, the transfer
time for a single frame, without link stabilisation
or release delays, Tframe, is determined, as this is
constant regardless of the size of the acknowledg-
ment window:

Tframe =
63

62
× (255× 8) + 160

1200
≈ 1.8629s

Tack, the time required to send an acknowledge-
ment, is also constant for all window sizes:

Tack = Ttxdelay +
63

62
× 160

bitrate
+ Ttxtail + p× Tslot

= 0.150 +
63

62
× 160

1200
+ 0.25× 0.020

≈ 0.2904s

Using these values, and the formula for Tmessage,
previously, the values in Table II were obtained.

Changing the bit rate to 9600 bits-per-second,
and using the formula for Tmessage, previously, the
values in Table III were obtained.

TABLE II
THEORETICAL MINIMUM TRANSFER TIMES, RAW AX.25

TRANSFER, 1200 BPS

Window timings from
size model (seconds)

1 68.0

2 61.2

3 58.8

4 57.8

5 56.9

6 56.4

7 56.4

* values are same for window sizes of 6 or 7 as both settings
generate only 5 acknowledgement frames for a 7182-byte transfer

TABLE III
THEORETICAL MINIMUM TRANSFER TIMES, RAW AX.25

TRANSFER, 9600 BPS

Window timings from
size model (seconds)

1 17.4

2 12.2

3 10.4

4 9.7

5 8.9

6 8.6

7 8.6

* values are same for window sizes of 6 or 7 as both settings
generate only 5 acknowledgement frames for a 7182-byte transfer

It should be noted that these figures do not
account for collisions, interference or the delay
incurred by the transfer of data between the host
system and the AX.25 radio modem over the RS-
232 serial interfaces [12]. As these model figures
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do not take account of these additional overheads
or the time required to process higher-level proto-
col commands for transmission, none of the exper-
imental results were expected to reach this level
of performance; the figures here serve primarily to
define the performance envelope of the experiment.

IV. EXPERIMENTAL NETWORK

A. Network

Figure 2 shows the experimental network used
to measure the system performance.

Half-duplex radio channel

SOURCE
DESTINATION

MONITOR

TNC TNC

TNC

Fig. 2. Experimental setup used to measure AX.25 performance.
Source and Destination devices were connected on a single RF data
channel (i.e., half-duplex)

Equipment used for the source node was a Ken-
wood TM-D710E with an integrated radio modem.
For the destination node, a Kenwood TH-D72E
also with an integrated radio modem was used.

A third transceiver and TNC was used to monitor
the radio channel to log all transmitted AX.25
frames and allow for the measuring of transfer
times.

The monitor used a Kenwood TH-D7 with in-
tegrated radio modem. All antennas were in close
proximity (less than 10 metres), thus power levels
were kept low at 5 Watts or less where possible.

To obtain a valid set of readings, ten trans-
fers of the candidate test file were completed
for each setting of the AX.25 window parameter
(maxframe). These readings were then combined
using a simple average in order to give an indica-
tive time for the given window setting.

The test file used contained 7182 bytes. When
it came to testing using TCP/IP, both TNCs were
first configured into KISS mode and then the Max-
imum Transmission Unit (MTU) and window sizes
were set on both Linux hosts, according to Table
IV, before each transfer commenced. This was to
ensure coherence between the AX.25 and TCP/IP

windowing. Transfer of the file data for TCP/IP
tests was performed using the FTP protocol.

TABLE IV
TCP/IP TEST SETTINGS. MTU, MSS & TCP WINDOW ARE ALL

IN BYTES

Window Size MTU MSS Window

1 168 128 256
2 296 256 512
3 424 384 768
4 552 512 1024
5 680 640 1280
6 808 768 1536
7 936 896 1792

For the AX.25CM-CL test, The dtncp utility was
used to send the test file.

Obviously the ftp, and dtncp applications add
their own small amount of overhead to the file
transfer (above that already added by AX.25).
However, it was considered to be valid to include
this in the final results, as the amount of additional
data is quite small in relation to the file being
transferred, and will be representative of “real
world” usage.

That said, for the purposes of generating compa-
rable data, great lengths were taken to make sure
that there were no collisions at the MAC layer2,
thus removing one unknown. Consequently, we
are confident that the figures obtained are a true
and accurate reflection of the performance of the
protocols tested in an ideal RF environment.

V. DISCUSSION

Tables V and VII list the results obtained for
transfers between the two TNC devices. As was
previously mentioned, it was not expect that the
actual transfer times would approach those of the
model, but the gap here is quite large. One possible
explanation is that collisions occurred during trans-
mission, forcing a re-broadcast of certain packets.
However, during the experiment, great care was
taken to make sure that there were no collisions at
the physical layer, so this cause can be eliminated.

The timing model does not account for buffering
and host-to-TNC data transfers, and it is conceiv-
able that these are responsible for the observed

2great care was taken to monitor the frequency for any interfer-
ence during the tests
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shortfall in performance. True to its name, the
KISS protocol used here favours simple implemen-
tation over performance, and is controlled entirely
by the host computer.

TABLE V
COMPARISON, 1200BPS

transfer times all in seconds

Window Model AX.25-CL

1 68.0 110.36

2 61.2 82.82

3 58.8 73.64

4 57.8 70.45

5 56.9 65.64

6 56.4 63.73

7 56.4 64.55

TCP/IP
169.18

114.91

96.45

90.36

88.18

86.09

86.82

The discrepancy between model and actual re-
sults was inversely proportional to the transmis-
sion size, and a simple division of the model-
to-experiment error by the number of transmitted
groups yielded a strong correlation between num-
ber of TX/RX swaps and the additional model
delay which can be see in Table VI.

TABLE VI
MODEL VS AX.25CM-CL ERROR, 1200BPS

all times all in seconds
Window TX/RX cycles Difference per group

1 29 42.4 1.46

2 15 21.6 1.44

3 10 14.8 1.48

4 8 12.6 1.58

5 6 8.8 1.46

6 5 7.4 1.47

7 5 8.2 1.63

The approximate 1.4 second additional “turn-
around” time between sending one group of pack-
ets and the next may be due to multiple buffering in
the chain from transmitter to receiver, slow compu-
tation of frame checksums by the devices, interrupt
latency, or any number of other factors. Adapting
the model to account for this constant delay would
improve its accuracy for this experiment, but there
is no guarantee that a different combination of
TNC and transmission equipment would exhibit the
same intrinsic delays.

TABLE VII
COMPARISON, 9600BPS

transfer times all in seconds

Window Model AX.25-CL

1 17.4 56.82

2 12.2 33.82

3 10.4 25.00

4 9.7 24.27

5 8.9 18.64

6 8.6 16.91

7 8.6 16.80

TCP/IP
71.50

42.91

34.10

30.50

27.00

25.27

26.09

A. Problems with large window sizes in DTN

Previously a bug was encountered a bug such
that on the fifth consecutive run with maxframe
set to 4, the AX.25 implementation in the host
computer appeared to enter an unstable condition:
instead of obeying the chosen maxframe setting,
the source unit flooded the receiver with all the
frames (over 20) of the data transfer, causing a
breakdown in flow control for both source and
destination [2].

On examination of the logs, it was deter-
mined that the AX.25 T1 timer (How long AX.25
will wait before retransmitting an unacknowledged
frame) needed to be increased from its default
value of 10 seconds for an AX.25 window of 4 or
more. With an AX.25 window of 4, it took almost
exactly 10 seconds to receive an acknowledgement.
Once the T1 timer was increased sufficiently, the
problem disappeared.

B. Resolving the issue of over-acknowledgement

Previously, the AX25CM-CL produced a flurry
of (TCP-CL Protocol) segment ACK messages
(acknowledgements - one for each segment/frame)
and sends these as distinct frames (Figure 3). This
was due to the our implementation sending a TCP-
CL ACK for every TCP-CL segment.

The purpose of the TCP-CL Protocol ACK is
to allow for reactive fragmentation of bundles in
scenarios where an AX.25 connection is dropped.
We chose the approach of allowing the speci-
fication of an acknowledgement window option
ack_window, in units of TCP-CL Protocol seg-
ments, in the AX25CM-CL link configuration pa-
rameters. This allows the granularity over which re-
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SOURCE DESTINATION

AX25(DATA)

DTN CL AX.25

DATA

DTN CL

DATA

AX25-ACK(DATA)

DTN-ACK(DATA)

AX25(DTN-ACK(DATA))

DTN-ACK(DATA)

AX25-ACK

AX.25

Fig. 3. Multiple acknowledgements produced by the DTN CL

Fig. 4. Comparison of transfer times for AX.25CM-CL and
TCP/AX.25 with reference to theoretical model at 1200bps.

active fragmentation is performed to be defined on
a link by link basis. If links are stable on dedicated
channels, then a higher value of ack_window
can be specified (e.g. 32). If link opportunities are
transient, then shorter ack_window values are
recommended (e.g. 8, the default). All completely
transferred bundles are acknowledged immediately,
so as to avoid redundant retransmission.

C. Possible bug in the TH-D72 Firmware
This issue manifested itself as an occasional

“beep” from the TH-D72, with the TH-D72 ceasing
transmissions. There seemed to be two different
bugs. In the first case, as the TH-D72 attempted to
transmit, a “beep” was heard from the radio and the
packet sent to the TH-D72 for transmission did not

Fig. 5. Comparison of transfer times for AX.25CM-CL and
TCP/AX.25 with reference to theoretical model at 9600bps

actually get transmitted. After receiving a packet
over-the-air, the next transmission went through as
normal. In the second case, the TH-D72 appears
to stop receiving. This resolves itself on the next
packet transmitted. During our test runs, any time
this happened, we discarded the result and added
a further test run at the end.

VI. CONCLUSION

The AX.25CM-CL now performs well, in both
the throughput testing described here and in longer
term usage testing for single-hop, point-to-point
links, on dedicated radio channels. The previously
reported over-acknowledgement within the Con-
vergence Layer protocol can now be managed by
defining the acknowledgement window appropri-
ately based on the expected link characteristics.
Static links with good link budget margin can be
tailored for with larger ACK windows. Intermittent
links can be optimised for shorter ACK windows
to mitigate against unwarranted duplication within
reactively fragmented bundles.

The measurements taken provide an illustration
that, on low-bandwidth links, the overhead of
TCP/IP can be significant, and careful thought
should be given to whether its use is really re-
quired. In this case, with a window of 1, a 20
byte (minimum) overhead on a 255 byte frame is
over 7% overhead. When comparing TCP/IP over
AX.25 with the AX.25CM-CL for DTN2, we are



71

comparing a protocol stack that is understood to
perform badly when carried on challenged links
with one that is explicitly designed for such envi-
ronments. The PILC working group reported on the
use of TCP Performance Enhancing Proxies (PEP)
[13] to mitigate against TCPs issues in this area.
By choosing to deploy the Bundling Protocol over
AX.25 instead of the TCP/IP stack we avoid the
undesirable consequences of breaking the end-to-
end principle with PEPs by using DTN as an over-
lay network. However, this still leaves us without
any ability to guarantee end-to-end reliability. The
Bundle Security Protocol would offer this, but to
date the authors have not yet attempted to deploy
this protocol in our testing environment.

In future work, we hope to continue devel-
opment of an AX.25 discovery mechanism for
DTN2 which will inter-operate with the APRS [14]
network. Also, a new LTP [15], [16] over AX.25
Convergence Layer for DTN2, tailored for use with
low earth orbit Amateur Radio satellites will be
investigated.
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