

High Performance Software Defined Radio

OpenHPSDR Project Update
September 2011

Scotty Cowling, WA2DFI

2011 TAPR/ARRL Digital Communications Conference

What is the OpenHPSDR Project...?

The OpenHPSDR Project is a modular, open source hardware and software platform for development of all components of a Software Def ined Radio.

It is also a group of vol unteers dedicated to the building of a pool of open -source Software Defined Radio design information.

What is an OpenHPSDR radio? High Performance Software Defined Radio

An OpenHPSDR radio has the following features:

- Very High Performance
- Based upon an open source model (OHL/NCL hardware, GPL software)
- Generally modular and expandable
- Advances the State of the Radio Art

TAPR's MISSION

Support OpenHPSDR development with:

R&D funding

- Breadboard prototypes
- " Alpha PCBs

Early volume production

"Put leading edge technology into many hands

TAPR's MISSION

Result: An ever growing pool of contributors, experimenters and subsequent advancement of the radio art

OpenHPSDR and TAPR are <u>separate</u> entities but:

They complement each other

openHPSDR Board Availability

Problem: TAPR is an R&D facilitator, not a manufacturer

Solution: someone needs to produce OHL boards after TAPR sells out the initial production run, but who?

Announcing iQuadLabs, LLC

- Not affiliated with TAPR
- "Web-based retail outlet for openHPSDR boards
- Offers OHL hardware at low margins with user support
- " Currently offering Magister, Mercury and Pennylane
 - Other SDR-related hardware to be offered in the future

www.iQuadLabs.com

Basic 1/2W OpenHPSDR Di rect Sampling Radio

- Backplane: Atlas 6-slot backplane
- PC Interface:
 - Magister or Ozy USB gateway . OR.
 - Metis Gigabit Ethernet interface
- Transmitter:
 - Penelope Transmitter/Exciter . OR.
 - Pennylane Transmitter/Exciter
- Receiver: Mercury Direct Sampling Receiver
- Power supply: **LPU** Linear Power Unit
- Enclosure: Pandora chassis enclosure

Basic 1W OpenHPSDR QSD/QSE Radi o

- Backplane: Atlas 6-slot backplane
- PC Interface: Magister/Ozy USB gateway
- Baseband A/D D/A Converter: Janus
- Power supply: LPU Linear Power Unit
- Enclosure: Pandora chassis enclosure
- QSD/QSE Front End:
 - Softrock RX/TX Ensemble

Advanced 20W OpenHPSDR Di rect Sampling Radio

- Backplane: Atlas 6-slot backplane
- PC Interface: Metis Gigabit Ethernet interface
- Transmitter: Pennylane Transmitter/Exciter
- Receiver: Mercury Direct Sampling Receiver
- Power supply: LPU Linear Power Unit
- Enclosure: Pandora chassis enclosure
- Power Amplifier: Pennywhistle 20W PA
 - RX & TX Filters: Alexiares LP/HP Filter Set

OpenHPSDR Boards

Atlas: The Backplane

Magister: USB gateway

Metis: Gigabit Ethernet interface

Pennylane: Transmitter/Exciter

Mercury: Direct Sampling Receiver

OpenHPSDR Boards, cont'd

LPU: Linear Power Unit

Pandora: OpenHPSDR Chassis

Alexiares: LP/HP Filter Set

Pennywhistle: 20W PA

OpenHPSDR Boards, Useful Additions

Janus: Baseband A/D and D/A

Pinocchio: The Extender

Excalibur: 10MHz reference

DJ8AY: Atlas 3-slot backplane

DJ8AY: Antenna Switch and 6M LNA

Atlas Backplane

Status: Kits available from TAPR

Ozymandias USB Gateway

USB interface to Atlas bus with parallel I/O

Status: superseded by Magister

Magister USB Gateway

USB interface to Atlas bus

Status: Available from iQuadLabs

Metis Gigabit Ethernet Interface

Gigbit Ethernet interface to Atlas bus

Status: Available from TAPR

Penelope Transmitter/Exciter

Digital Up Conversion (DUC) 1/2 W tran smitter/exciter

Status: superseded by Pennylane

Pennylane Transmitter/Exciter

Digital Up Conversion (DUC) 1/2 W tran smitter/exciter

Status: Available from iQuadLabs

Mercury Direct Sampling Receiver

0-65MHz direct sampling receiver

Status: Available from iQuadLabs

LPU

Linear Power Unit

Status: Kits available from TAPR

Pandora Enclosure

OpenHPSDR Chassis

Status: Available from TAPR

Alexiares RF Bandpass Filters

Alex Quick Features

- Two board set
 - RX-HPF High-Pass Filter board
 - TX-LPF Low-Pass filter board
- 160mm x 100mm boards fit into standard Euroboard housing
- SPI bus controlled (from Mercury or other SPI)
- Power requirement: nominal +12V @ 180mA maximum
- Can operate stand-alone for other applications
- Low insertion loss
 - < 2.0dB on receive paths, < 0.5dB on transmit paths</p>
 - No degradation of Mercury IP3
- No continuously running internal oscillators

Pennywhistle 20W PA

20W Power Amplifier

Status: Kits available from TAPR

Janus A/D - D/A Converter

High speed full-duplex A-to-D and D-to-A converter

Status: Available from TAPR

Pinocchio Extender

Status: Kits available from TAPR

Excalibur 10MHz Reference

10MHz Clock Reference

Status: Kits available from TAPR

DJ8AY OpenHPSDR boards

OpenHPSDR Boards available from DJ8AY

- □3-slot Atlas backplane
- Antenna T/R switch and 6M LNA

For availability, contact:

Gerd Loch DJ8AY

g.loch@nt-electronics.de

Boards Coming Soon

Hermes: DUC/DDC transceiver

Apollo: 15W PA/LPF/ATU

Munin: 100W PA

Cyclops: 1GHz Spectrum Analyzer

Griffin: GPS locked WSPR beacon TX

Hermes

Single-board DUC/DDC Transceiver A4 Features

- Direct Sampling RX and Direct Up Conversion TX on single board
 - Mercury front end/s ampling section: continuous 50kHz. 54MHz coverage
 - Pennylane CODEC and TX section with 500mW PA
- Single Altera EP3C40 Cyclone III FPGA for filtering and data processing
- Metis Gigabit Ethernet Interface, 10/100/1000
- Mercury SPI Interface to Apollo/Hermes Companion/Alex
- □ Digital I/O: 7 OC digital outputs, 3 digital inputs, 4 12 bit analog inputs
- Key, paddle and PTT inputs, jumper selectable electret microphone bias
- Input attenuator: 31dB s oftware switchable in 1dB steps
- □ Preamp: -135dBm noise floor (@500Hz BW)
- □ LA2NI On-board low noise SMPS: typ 400mA from 13.8V supply
- □ Larger standard 120mm x 160mm c ard, 8 layer PCB

Hermes

Single-board DUC/DDC Transceiver Features, cont'd

- Full-duplex operation, any frequency/mode split
- □ 122.88MHz master clock, can be locked to TCXO or external reference (GPS)
- Stereo audio: 1W speaker out, headphone out, line out
- Dedicated 0dBm trans verter output
- TX/RX image rejection: greater than 110dB
- Blocking Dynamic Range (BDR): typical 125dB
- Eight independent receivers will fit can be implemented within 3C40 FPGA
- Software support: KISS Konsole, PowerSDR, GHPSDR

Status:

Second GiG-E prototype (A-4) built and tested. All spur issues resolved. Pre-production build underway.

© 2011 Scotty Cowling WA2DFI

Hermes

© 2011 Scotty Cowling WA2DFI

Hermes

Single-board DUC/DDC Transceiver

Hermes Companion

Single-board 15W PA/Low Pass Filter

- □ Filter selection scheme similar to Alex
- □ T/R switch
- Three-way antenna selection
- Directional coupler for forward and revers e power measurement
- RD06 driver and push-pull RD15 PA MOSFETs
- □ 15W on all bands 160M . 6M with spurious/harmonics better than -40dBc
- Option: Apollo without ATU

Status:

Prototype designed, built and tested by Abhi Arunoday.

Production is TBD.

Hermes Companion

Single-board 15W PA/Low Pass Filter

Apollo 15W PA-LPF-ATU

- Combine with Hermes for a single box OpenHPSDR transceiver
- 15W PA based on Pennywhistle design
- Low Pass Filters based on Alex design at reduced power
- SPI control from Hermes DUC/DDC Transceiver board
- Low-power automatic Antenna Tuning Unit using Atmel AVR MCU
- Form-factor updated to piggy-back onto new, 120x160mm Hermes

Status:

Artwork update nearly complete
Project leader Kjell, LA2NI
Planned for release slightly after Hermes

Apollo 15W PA-LPF-ATU

openHPSDR-in-a-box

Well, almost!

Hermes and Apollo share a standard enclosure

This is the smaller Alpha -2 build form factor

(100mm x 160mm)

Simplified Block Diagram

Munin 100W PA

- RD06 pre-driver, pair of RD15 drivers
- □ Pair of 100HHF1 MOSFETs in push-pull
- Redesigned transformer for higher output and improved efficiency
- measured power output, spurious outputs @ -30dBc or better:
 - □120W output on 160M
 - □130-140W output on 80M . 10M
 - □102W on 6M
- 500mW drive for full output. can be driven by Penelope/Pennylane

Status:

R S R

Alpha unit built and under test
Project leader Kjell, LA2NI
Availability TBD

Munin 100W PA

Cyclops

1GHz Spectrum Analyzer

- □ First IF at 1030MHz / Second IF at 96MHz
- Second LO output for future tracking generator
- For use with HPSDR Mercury or Quicksilver
- 120mm x 100mm Atlas card

Status:

Alpha-2 units built and under test by VK6APH and VK5ABN FPGA firmware and PC test program (Win XP) written Project suspended

Cyclops

Cyclops 1GHz Spectrum Analyzer Block Diagram

Cyclops

1GHz Spectrum Analyzer

Cyclops
Alpha-1
Build

© 2011 Scotty Cowling WA2DFI

Cyclops
Screen

Shot:

1uV @ 1GHz

Cyclops

© 2011 Scotty Cowling WA2DFI

New & Improved Cyclops

4 GHz Spectrum Analyzer

- Project re-activated
- New devices available to extend range beyond 4 GHz
- Evaluating ADF4350 synthesizer, DC . 4.4 GHz
- Will use Mercury/Metis for IF

Status:

Project leaders: Phil, VK6APH and Berndt, VK5ABN

In concept phase

Griffin

HF/VHF Chirp Beacon Exciter

- Low-power WSPR and %hirp+beacon exciter for HF/6M/2M
- Prototype built and tested using Penelope transmitter
- Jupiter GPS provides:
 - 10kHz reference to phase lock transmitter
 - □1 pps for time sync
- Mercury FPGA code to time-stamp data using LSB of mic data
- Hermann, DL3HVH is writing decode software in CUDA
- Kurt, DL9SM has chirp beacon working, 20km from DL3HVH
 - → Results expected shortly ←

Griffin

HF/VHF Chirp Beacon Exciter

- Andrew, VK3OE has remote HF/6M chirp beacon working
 - Presently using Matlab to decode data
 - Propagation data is proving to be very accurate & reliable

Status:

Project leaders: Phil VK6APH and Kevin M0KHZ

Currently under development

Griffin

HF/VHF Beacon Exciter

Multiple Receivers, F/W

For those with more than twice as many ears as noses ...

- FPGA firmware based
- FOUR independent receivers can reside on OpenHPSDR Mercury
- Hermes can support EIGHT receivers due to increased FPGA size
- How does this work?
 - High-speed ADC digitizes entire 54MHz wide spectrum
 - FPGA creates separate 192kHz wide data stream for each receiver
 - PC demodulates each data stream as a separate virtual receiver

Since each data stream is created from all of the HF data, each virtual receiver is fully independent: frequency, mode, bandwidth, AGC, etc

🐧 Applications Places System 😭

JMonitor: 24.192.100.58

Multiple Receivers, F/W

JMonitor: 24.192.100.58

Mon May 3, 12:13 PM khopper (b)

Screen Shot from Ken, N9VV

Multiple Receivers, H/W

For those with more antennas than receivers...

Joe, K5SO is working on a multiple hardware receiver setup

- □ FOUR phase-locked Mercury receivers on one Atlas bus
- Phased antenna arrays
- True Diversity Reception

HPSDR Standalone Server

For those with no antennas...

Phil, VK6APH and John G0ORX/N6LYT are working on adding a softcore CPU to the FPGA on Metis

- GHPSDR3 Server runs inside the FPGA
- No PC required
- Ethernet-based server

Firmware Update

- Update for Alex filter control
 - Requires new firmware for all boards
 - New command types in data stream
- More flexible Alex filter selection
 - Automatically selects filters based on frequency by default
 - PC Software can manually o verride automatic selection

Maintains compatibility with all existing sof tware

Firmware Update

- Latest Firmware revisions under Beta test:
 - Ozy/Magister V2.0
 - □ Metis V1.5
 - Mercury V3.0
 - Penelope/PennyLane V1.5

Status:

Project leader: Phil, VK6APH
Scheduled for release by 18 September 2011

Token Software Page

('cuz Jeremy sez I hafta...)

- Kiss Konsole (KK) has been unified by George, K9TRV
 - Unifies Ethernet and USB code
 - Will be basis of future versions of KK from now on
- cuSDR by Hermann, DL3HVH
 - written in C++/C instead fo C#
 - uses Qt interface

Token Software Picture

cuSDR from Hermann DL3HVH

Thank you!

Project information at: www.openhpsdr.org

Interest list at: www.hamsdr.com

Boards available at: <u>WWW.tapr.org</u>

www.iQuadLabs.com

