Practical Software Radio Why Things Don't Always Match the Textbooks

Matt Ettus <matt@ettus.com>

Ettus Research LLC

September, 2011

• • • • • • • • • • • •

Outline

3 Radio Architectures

Impairments

- Hardware Inherent
- Architecture Specific

Outline

- 2 Measurements
- 3 Radio Architectures
- Impairments
 - Hardware Inherent
 - Architecture Specific

→ 同 → → 国 → → 国 →

Essentially, all models are wrong, but some are useful. - George E. P. Box

イロン イヨン イヨン イヨン

臣

- Making measurements
- Radio Architectures
- Real-world impairments
 - What they are
 - How to recognize and diagnose them
 - How to fix them

Signals of Interest

- Sine waves (single and multi-tones)
- FSK
- PSK/QAM
- OFDM

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Radio Architectures

- Heterodyne
- Direct conversion

・ロト ・ 日 ・ ・ 目 ・

< ∃ >

Э

Impairments

- Hardware independent
 - AWGN
 - Multi-path
 - Frequency and phase offset
 - Symbol rate and timing offset
- Hardware Inherent
 - Non-linearity
 - Quantization
 - Phase Noise
 - Passband shape and group delay
- Architecture Specific
 - DC Offset
 - IQ Balance

Outline

3 Radio Architectures

Impairments

- Hardware Inherent
- Architecture Specific

→ 同 → → 国 → → 国 →

Interpreting Spectrum Analyzer measurements

- What is Noise floor?
- Bandwidth
- Measuring power
 - Parsevals theorem
 - Scalloping "loss"
- Spectral estimation
- Averaging
- Windowing
- The differences between swept and FFT spectrum analyzers

Windows

- None (aka square)
 - Narrowest BW
 - Most leakage
- Hamming
 - Good narrow BW, high sidelobes
- von Hann (aka "Hanning"), Blackman-Harris
 - Good general-purpose
- Flattop
 - No scalloping
 - Wide BW

Metrics and Definitions

- What is SNR?
 - SNR, SNDR, SINR
 - CNR (C/N0)
 - Eb/NO
 - The misunderstood "Noise Floor"
 - Noise figure
- What is Sensitivity?
- What is dynamic range?
 - SFDR
 - IP3
 - Power handling
 - Gain control range
- Universal figures of merit

Example Specs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ł

Outline

2 Measurements

3 Radio Architectures

Impairments

- Hardware Inherent
- Architecture Specific

・ 同 ト ・ ミ ト ・

-≣->

Heterodyne

A B > A B >

Direct Conversion

Matt Ettus <matt@ettus.com> Pr.

Practical Software Radio

Heterodyne Vs. Direct Conversion

- Heterodyne is simpler
- Wideband easier in Direct Conversion
- Fewer spurs in DC, but harder to fix them
- RF vs. IF vs. BB Filtering
- Component matching critical in DC

Hardware Inherent Architecture Specific

Outline

2 Measurements

3 Radio Architectures

Impairments

- Hardware Inherent
- Architecture Specific

★ 3 >

Hardware Inherent Architecture Specific

Hardware Inherent

- Non-linearity
- Quantization
- Phase Noise
- Passband Shape and Group Delay

Hardware Inherent Architecture Specific

Non-linearity

- Output not a multiple of the input
 - Transfer function depends on amplitude
- Primary mechanism in semiconductor amps is clipping behavior as you approach maximum output

•
$$V_{out} = k_1 V_{in} + k_2 V_{in}^2 + k_3 V_{in}^3 + \dots$$

•
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

•
$$\cos^3 x = \cos(3x) + 3\cos^2 x$$

• Output contains frequencies not in the input (harmonics and mixing products)

ヘロト ヘヨト ヘヨト ヘ

- Not just amplifiers (mixers, capacitors, inductors, even connectors)
- More complex models
 - Volterra Series
 - AM-AM and AM-PM

Hardware Inherent Architecture Specific

Third order non-linearity

- Third order the most important
- Typically modeled with third order intercept (IP3, IIP3, OIP3)
 - Intercept point is the [extrapolated] point at which intermod products would equal desired products
 - Typically ~10dB above P1dB
 - Don't actually operate at that point!
- $P_{IMD3} = 3P_{signal} 2IP_3$
 - IMD3 products increase 3x as fast as input
 - IMD products appear at $2f_1 \pm f_2$, $2f_2 \pm f_1$, $3f_1$, $3f_2$

Hardware Inherent Architecture Specific

Second order non-linearity

- 2nd order products fall at DC, $f_1 \pm f_2, 2f_1, 2f_2$
- DC IMD2 product often mistaken for DC offset
- Only a problem in certain situations
 - Band of interest is greater than 1 octave
 - Band of interest includes DC
 - Direct Conversion receivers

Hardware Inherent Architecture Specific

Quantization

- Not to be confused with discretization (i.e. time steps)
- Inherent in digital systems
 - Finite bit widths in ADC, DAC
 - Costs of digital processing, storage, transmission
 - Cost of a Multiply operation is proportional to bits²
 - Even floating point numbers are quantized

Hardware Inherent Architecture Specific

Quantization, cont'd

- Quantization results in noise
 - Often modeled as AWGN
 - Beware of correlated quantization noise $(f/f_s \simeq M/N)$
 - SNR = 6.02N + 1.76dB
- Non-ideal ADC/DAC behavior causes similar problems to correlated noise

Hardware Inherent Architecture Specific

Phase Noise

- Random phase perturbations on an oscillator
- Specified as dBc/Hz at an offset from carrier

 $\bullet\,$ i.e. -100dBc/Hz at 100kHz offset

- Modeled by the Leeson phase noise equation
- Spurs are a related phenomenon with similar symptoms

Hardware Inherent Architecture Specific

Phase Noise, cont'd

- Always causes self noise
 - increasing signal doesn't help
- -100dBc/Hz doesn't sound like much
 - Over a 10 MHz BW signal that equates to -30dBc
 - No QAM 256 for you!
- Total integrated phase noise often specified
 - I.e. 1.5 degrees RMS in a 20kHz to 80 MHz BW
- On TX causes adjacent channel emissions, broadband noise floor
- On RX mixes strong adjacent signals onto desired signal

Hardware Inherent Architecture Specific

Passband Shape

- Rolloff at edges of passband are common
 - causes loss of signal energy
 - can cause inter-symbol interference (ISI)
- Many filters have ripple, like:
 - SAW filters
 - Chebyshev filters
 - Parks-McClellan FIR filters
- A transfer function which is not flat in the frequency domain is not an impulse in the time domain
- Spread in the time domain can smear adjacent symbols

Hardware Inherent Architecture Specific

Group Delay

• Group delay is the frequency derivative of the transfer function:

•
$$D(\omega) \triangleq -\frac{\partial}{\partial \omega} \measuredangle H(\omega)$$

- Linear phase means constant group delay
- Many filters do not have linear phase:
 - IIR filters
 - non-symmetric FIR filters
 - all analog filters
- Non-constant group delay means dispersion
 - Like ISI, but can be worse
 - 4FSK example
- Filters can be designed to compensate for group delay variation

Hardware Inherent Architecture Specific

Architecture Specific

- DC Offset
- IQ Balance

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Hardware Inherent Architecture Specific

DC Offset

• Causes

- Component mismatch
- LO leakage
- 2nd order distortion
- Varies with time, temp, frequency, voltage, moon phase, etc.
- Produces self interference
- Remedies
 - Ignore DC (use low-IF or ignore DC bin in OFDM)
 - AC-couple
 - Highpass filter (receiver only)
 - Estimate and subtract in either analog or digital domains
 - must be done at true baseband
 - much easier on the receiver

Hardware Inherent Architecture Specific

IQ Imbalance

- Magnitude imbalance caused by gain mismatch between paths
- Phase imbalance caused by
 - imperfect 90 degree phase shift in LO
 - ${\ensuremath{\, \bullet }}$ mismatched phase or group delay between I and Q paths
- Varies with time, temp, frequency, voltage, moon phase, etc.
- Effects
 - Self interference
 - Out of channel leakage on transmit
 - Susceptibility to out of channel interference on receive
 - Inherently non-LTI since it generates new frequencies

Hardware Inherent Architecture Specific

Fixing IQ Imbalance

Remedy is

- estimate the relative I and Q magnitude error and scale appropriately
- estimate the relative phase and rotate components appropriately
- Must be done at true baseband
- Much easier on the receiver
- May be baseband frequency selective
 - Must scale magnitude and phase differently for different frequencies

• • 3 • •

• Requires multi-tap filter