
135

 QEX – July/August 2011 3

Craig Johnson, AAØZZ

4745 Kent St, Shoreview, MN 55126; aa0zz@arrl.net

Programmable PLL (Si570) Local
Oscillator for HF Receivers,
Transmitters and Tranceivers

1Notes appear on page 16.

The Silicon Labs Si570 is a versatile programmable phase locked loop IC with many
possible Amateur Radio applications. This PLL synthesizer is one good example.

A new product has recently been devel-
oped by Silicon Labs, the Si570 DSPLL®
programmable frequency synthesizer, and it
has great potential for use in many Amateur
Radio applications. Here we will explore
some possible uses. Phase locked loop tech-
nology has been in use for many years, but
the ability to use variable software-supplied
loop parameters in PLL technology to
directly generate square waves with fre-
quency resolutions of 1 Hz or better is now
possible. The Si570 immediately puts the
new technology into the sphere of uses that
has recently been dominated by direct digital
synthesis (DDS) products.

This AAØZZ Si570 daughtercard uses
the Silicon Labs Si570 (CMOS version)
and, when controlled by a microcontroller,
can generate RF signals in the continuous
range of 10 to 157 MHz. (Other versions of
the Si570 can go up to 1.4 GHz.) When the
daughtercard is incorporated into a control
board, the Si570 daughtercard can easily be
used as the local oscillator of an Amateur
Radio transceiver. Since many amateurs use
divide-by-four mechanisms in quadrature
sampling detectors (QSD) — also known as
“Tayloe” mixers — for their receivers and
also in quadrature sampling exciters (QSE)
for their transmitters, this Si570 daughter-
card can provide the local oscillator signal
for these receivers and transmitters on the 80
through 10 meter amateur bands.1

Si570 Operation
Figure 1 shows a block diagram of the

Si570. The Si570 offers some significant
advantages over the DDS parts that have
been used by amateurs in applications in
recent years. Two advantages are greatly
reduced power consumption and the rela-
tively clean output without DDS byproducts
(spurs). The Si570 uses a combination of
DSP processing and a PLL topology with
frequency selection parameters set by the
user via an I2C serial communications link to

generate the desired output frequency.
Silicon Labs offers several versions of

the Si570 with different output options and
frequency limits. I used a CMOS version of
the Si570 for this project. It has a 10.0 MHz
default frequency and a 160 MHz maximum
frequency. The internal crystal of the Si570
runs at a nominal 114.285 MHz. The crystal
in any individual part will not oscillate at
exactly this frequency, however. Since the
crystal frequency is used in the frequency
generation calculations for the Si570 input

136

4 QEX – July/August 2011

parameter words, any deviation from nomi-
nal means that the Si570 generated frequency
will not be accurate. Fortunately, Silicon
Labs calibrates each individual part in the
factory and saves the calibrated parameters
in its nonvolatile memory to cause it to start
up at the default frequency (in this case,
10.0 MHz). The software can retrieve these
parameters from the nonvolatile memory
and thus calculate the calibrated crystal fre-
quency. This calibrated crystal frequency
can then be used in subsequent calculations
and the results will be much more accurate
than they would be if the nominal crystal fre-
quency was used for the calculations.

Si570 Functional Description
The spec sheet of the Si570 is a real chal-

lenge to interpret. The description given here
will not substitute for a thorough reading
of the spec sheet but it will get you started.
(You can find the full details on the Silicon
Labs website at www.silabs.com/Support
Documents/TechnicalDocs/si570.pdf.)

Command data bytes are sent from the
controller to the Si570 registers by way of
the standard I2C serial communications pro-
tocol. (The I2C communications protocol is
described later in the article.) The basic con-
trol registers are shown in Table 1.

Si570 Output Frequency Generation
The Si570 has a digitally-controlled oscil-

lator (DCO), driven by a fixed-frequency
crystal and PLL loop-control parameters.
There are three frequency selection param-
eters that the software must set up for the
Si570 to generate the desired output fre-
quency. The basic frequency generation
formula is:

Fout = (Fxtal × RFREQ) / (HS_DIV × N1)
where:

F x t a l i s t h e f i x e d c r y s t a l f r e -
quency (114 .285 MHz nomina l)
RFREQ is a 38 bit variable consisting
of a 10 bit integer and a 28 bit fraction.
HS_DIV can be 4, 5, 6, 7, 9 or 11.
N1 can be 1 or any even integer between (and
including) 2 and 128.

Additional parameter selection con-
straints are as follows. First, the DCO fre-
quency specified in the numerator of this
equation (Fxtal × RFREQ) must always
be in the range of 4.85 GHz to 5.67 GHz.
Since the Fxtal value is 114.285 MHz, the
RFREQ range is 42.44 to 49.613. This DCO

range can be stretched to some extent, as
evidenced by the default setup parameters
set up in a sample Si570 with factory settings
for 10 MHz (see the SetupFxtal routine later
in the article).

The second constraint is to optimize for
minimal power consumption. Many different
combinations of RFREQ, N1 and HS_DIV
that will produce a given output frequency
are possible to use. The lowest value of N1,
along with the highest value of HS_DIV
results in the lowest power consumption.

Si570 Freeze DCO
When specifying the parameters for

Table 1

Si570 Control Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Si Reg 7 HS_DIV_Index [2:0] (N1 – 1) [6:2]

Si Reg 8 (N1 – 1) [1:0] RFREQ (integer) [37:32]

Si Reg 9 RFREQ (integer) [31:28] RFREQ (fractional) [27:24]

Si Reg 10 RFREQ (fractional) [23:16]

Si Reg 11 RFREQ (fractional) [15:8]

Si Reg 12 RFREQ (fractional) [7:0]

Si Reg 135 RST_REG New Freq Freeze M RECALL

Si Reg 137 Freeze DCO

Figure 1 — Here is a simple block diagram illustrating the operation of the Silicon Labs Si570
programmable PLL IC.

137

 QEX – July/August 2011 5

changing the output frequency of the Si570,
the current frequency must also be consid-
ered. Large frequency changes require the
DCO to be stopped and restarted before it
can jump to the new frequency while small
changes do not. Freezing the DCO is done
by setting the “Freeze DCO” bit (bit 4 in
SiReg 137) before sending the normal fre-
quency update registers (Registers 7 - 12)
to the Si570. After the frequency update the
“Freeze DCO” bit is cleared to unlock the
DCO.

If the difference between the new fre-
quency and the last freeze frequency is
more than 3500 parts per million (0.35%)
of the last freeze frequency, a DCO freeze is
needed. Figure 2 shows the frequency range
of the DCO oscillator (specified by Fxtal ×
RFREQ) and the frequency range that can
be covered without a freeze. If the output
change is less than 0.35% from the last
freeze frequency, the DCO frequency is the
only value that needs to be changed for the
frequency update.

Why not just do a freeze/unfreeze on
every frequency update and skip the calcula-
tion to determine whether or not it is neces-
sary? Because it can take a relatively long
time (up to 10 ms) for the RF to “settle”
on the new frequency and the RF output is
stopped during this period. See Figure 3.

In this example, trace 1 is high during the
freeze-update-unfreeze sequence (980 s)
and trace 4 shows the RF dropout (220 s).
The RF dropout that occurs when the Si570
is stopped and restarted at the new frequency
after a DCO freeze causes an audible pop in
a receiver. See Figure 3B for an oscilloscope
screen shot of the audio pop. Channel 1 is
high during the DCO freeze and Channel 2 is
the audio. Small frequency changes without
a DCO freeze do not cause the pop sound.

Freeze M
It takes a measureable amount of time

Figure 2 — This
drawing illustrates the
frequency range that

does not require a
DCO Freeze operation

before changing
frequency. A larger

change will require a
DCO Freeze operation

first.

Figure 3 — Part
A shows an

oscilloscope display
of the RF dropout
following a DCO

Freeze. Part B shows
an oscilloscope

display of the audio
“pop” that follows a

DCO Freeze.

Figure 4 — Here
is an oscilloscope

display of the
Si570 RF output at

14.025 MHz.

Figure 5 — A basic test circuit to measure
the Si570 output impedance.

138

6 QEX – July/August 2011

to send the six frequency configuration
(RFREQ and loop parameter) bytes to the
Si570 registers via the I2C communications
link. (It takes 120 s if sent at the maximum
I2C communications link speed of 400 kHz
and 667 s in the PEgen570 application
with an I2C rate of 72 kHz.) As the six bytes
are being sent, one bit at a time, the Si570
is using the registers to spray RF signals at
undesired frequencies. Granted, the time is
short and the RF signal is often not being
transmitted while the frequency is being
changed so this random RF would not be
going far, but it could be a significant prob-
lem for FSK (where the transmitter stays on
as it shifts between the MARK and SPACE
frequencies) or for other digital modes.

The FREEZE M feature solves this
problem. The FREEZE M bit (Bit 5 in con-
figuration byte 135) is designed to be set
just before the frequency update is done and
cleared after all six bytes are transferred.
Note that this is different from the FREEZE
DCO functionality, which is required when
the frequency changes by more than 0.35%
from the last freeze. The FREEZE DCO
function will continue to be used; however,
this is for the small frequency updates in
which a FREEZE DCO is not needed. This
new FREEZE M functionality causes the
frequency update in the Si570 to be frozen
until the FREEZE M bit is cleared. By then,
all of the new frequency bytes are ready to
be used and the Si570 jumps directly to that
frequency.

Si570 RF Output and Output
Impedance

The Si570 RF output is close to a square
wave. An example of a CMOS Si570 run-
ning at 14.025 MHz into a 50 load is
shown in Figure 4. Here the output RF signal
level is about 1.7 V p-p.

Calculations were done to determine the
output impedance of the Si570. The basic test
circuit is shown in Figure 5.

First the output voltage, V, is measured
with no load resistor. This is the same as
the source voltage, since there is no current
through Z at this time. Then a shunt resis-
tor with known resistance is placed across

the output and the voltage, VL, is measured.
Using the following equations, the output
impedance is calculated.

I = V / (Z + RL)
VL = RL × I
VL = RL × V/ (Z + RL)
Z = RL × ((V – VL) / VL)
An 18 load resistor in the test circuit

produced the following results:
V = 3.8 V
VL = 3.4 V
Z = 18 × ((2 – 1.2) / 1.2) = 12
This means that a 38 series resistor

could be used to match the Si570 RF output
to a 50 load.

I2C Communications
The control interface to the Si570 is an

I2C-compatible 2-wire bus for bidirectional
communication. The I2C address for an
Si570 is always 55 (hex). Since the slave
address for I2C is a 7 bit field, the most sig-
nificant bit is truncated and the direction bit
(0 for a Write operation) is placed in the least
significant bit of this byte. For a Write com-

Table 2
The I2C bit order.

Start Slave Adr + Dir Ack Data Ack Data Ack Stop
 1010101 0 xxxxxxxx xxxxxxxx

Figure 6 — The IC2 data transfer timing diagram.

mand to the Si570, the bit order is as shown
in Table 2. The operation and timing of the
two I2C signals on the bidirectional bus is
illustrated in Figure 6.

When the source device and the destina-
tion device are communicating via the bidi-
rectional I2C protocol, and they are operating
with different voltage levels, hardware cir-
cuitry is necessary to translate the voltages.
Many different schemes have been devised
but a very simple and effective method, with-
out the need for direction control signals, is
described in the I2C Bus specification. With
a single source (a PIC microcontroller) and a
single destination (an Si570) the level shift-
ing mechanism is as shown in Figure 7.

The level shifter consists of one discrete
N-channel enhancement MOSFET for the
serial data SDA bus line and one for the serial
clock SCL bus line. The MOSFET gates are
connected directly to the lowest supply volt-
age. The sources of the two MOSFETs are
connected to the SDA and SCL bus lines on
the 3.3 V device and the MOSFET drains
are connected to the SDA and SCL bus lines

Figure 7 — This circuit shows an I2C level shifter.

139

 QEX – July/August 2011 7

Figure 8 — The Si570 daughtercard schematic diagram.

Figure 9 — This photo shows the Si570 daughtercard.
Figure 10 — Here, the Si570 daughtercard is plugged into the PIC-EL

III board.

140

8 QEX – July/August 2011

on the 5 V device. Each of these BS170
MOSFETs has an internal diode between the
drain and source.

When neither device is pulling down a
bus line (either SDA or SCL), the bus lines
on the 3.3 V side are pulled up by the pull-up
resistors R3 and R4 to 3.3 V. Since the gate
and the source voltages of both MOSFETs
are at 3.3 V, the Vgs voltages are below
the turn-on threshold voltages so neither
MOSFET is conducting. This allows the bus
lines at the 5 V side to be pulled up by the
pull-up resistors R1 and R2 to 5 V. The bus
lines of both sides are HIGH but at different
voltage levels.

When the 3.3 V device pulls down a
bus line (SDA or SCL) to a LOW level, the
source of the MOSFET also becomes LOW

while the gate stays at 3.3 V. As Vgs rises
above the threshold, the MOSFET starts to
conduct. The bus line on the 5 V side is also
pulled down to a LOW level by the 3.3 V
device via the conducting MOSFET. Both
sides of the bus lines are LOW and at the
same voltage level.

When the 5 V device pulls down a bus
line (SDA or SCL) to a LOW level, the
source of the MOSFET is also pulled to a
LOW level via the drain-source diode inter-
nal to the MOSFET. As the source is pulled
down, Vgs passes the turn-on threshold and
the MOSFET starts to conduct. The bus line
of the 3.3 V side is then further pulled down
to a LOW level of the 5 V side via the con-
ducting MOSFET. Both sides of the bus lines
are LOW and at the same voltage level.

Si570 Daughtercard
The daughtercard schematic is shown in

Figure 8. It has two voltage regulators. One
converts 12 V to 5 V and the other converts
5 V to 3.3 V. Why not just bring a 5 V line
from the PIC-EL to the daughtercard and
avoid the 12 to 5 V regulator? Two volt-
age regulators are used because the PIC-EL
daughtercard connector was designed to
deliver 12 V for a DDS-30/60 daughter-
card from the American QRP Club (www.
amqrp.org), and the goal of this project was
to use the existing PIC-EL circuitry without
making hardware modifications.

Other versions of the Si570 have higher
frequency limits but with reduced amplitude
output. The spec sheet for the CMOS version

Figure 11 — This circuit is the Si570 control board schematic diagram.

141

 QEX – July/August 2011 9

says it operates between 10 and 160 MHz,
but some users report it can be used between
3.5 and 240 MHz.

The daughtercard can be used in many
different platforms. I will describe a couple
of examples.

Daughtercard with PIC-EL
One platform for the Si570 daughtercard

(Figure 9) is the AAØZZ PIC-EL board
(Figure 10). The PIC-EL board provides a
very convenient platform for experiment-
ing with the software to operate the Si570. I
described the PIC-EL board in several QST
articles.2

The Si570 daughtercard was designed to
fit into an 8-pin socket on the PIC-EL board
that was originally designed to accommodate
an AmQRP DDS-30 or DDS-60 daughter-
card The DDS daughtercard operates with
three control lines. The Si570 daughtercard is
simpler in that it operates with two commu-
nications lines. The communications scheme
used by the Si570 is I2C and that means the
lines are both bidirectional. This presents a
problem for the PIC-EL, since two of the
three PIC lines that go to the daughtercard
interface are also shared by the LCD and
the other line is shared with the program-
mer. This sharing of pins prevents two-way
communications via I2C with these lines.
The workaround is to use an external cable
to connect the daughtercard to the PIC-EL’s
paddle jack. The paddle jack connects to dif-
ferent PIC pins and these pins are only shared
with PIC-EL Pushbuttons 2 and 3. These two
pushbuttons cannot be used when operating
the Si570 daughtercard but otherwise the
lines work well for I2C communications.

The header (HDR2) on the daughtercard
is a 2×2 connector block that is not used
when the daughtercard is used in a PIC-EL
with the external cable.

Daughtercard with Control Board
The Control Board schematic is shown

in Figure 11.
When the daughtercard is used with a

dedicated control board instead of a PIC-EL,
then header HDR2, the 2×2 connector block,
is put into use and the external cable from the
stereo jack on the daughtercard to the driver
platform is not needed. Two jumpers are
installed in this header block (1 to 4 and 2 to
3) to route the I2C communications through
the 8-pin interface connector.

The current required by the Si570 daugh-
tercard alone is about 100 mA and the total
current required by the daughtercard and
the Control Board with LCD active is about
160 mA.

PEgen570 Software Application
The sample application software for

the AAØZZ Si570 daughtercard is called

PEgen570. It runs on a simple, inexpensive
16F88 PIC in the PIC-EL board. There are
several reasons why the 16F88 was selected
for this application instead of the PIC-EL
standard 16F628A:

1) Compared to the 16F628A, the 16F88
has twice as much FLASH memory (for pro-
gram instructions), 50% more data memory
(for variable storage and tables) and twice
as much EEPROM memory (non-volatile
storage).

2) The 16F88 has an 8 MHz internal oscil-
lator while the 16F628A has a 4 MHz internal
oscillator. The extra speed is helpful.

Obviously, the user interface in the
PEgen570 app is much simplified from the
user interface in my IQPro DDS VFO but the
application was simplified such that it could
be developed and debugged on the PIC-EL
board.3

Figure 12 shows an oscilloscope snapshot
of the start of an I2C communication sequence
in which the control board is sending a fre-
quency update to the daughtercard. The I2C
communications sequence begins with the
falling edge of the SDA line (Channel 2)
while the SCL line (Channel 1) is high. The
next bits show the beginning of the 55 (hex)
device address (lower 7 bits) as described in
the I2C Communications section. The clock
rate in this implementation is 72 kHz. Since
the Si570 can handle speeds up to 400 kHz,
this rate is well below the limit.

Frequency Selection Method
The methods for selecting N1, HS_DIV

and calculating RFREQ for every frequency
update are many. They can also be very time
consuming, so optimization is especially
important for a small microcontroller. For this
reason, the following scheme was developed.

1) Create a list of pairings of all valid N1

and HS_DIV values. Calculate the frequency
ranges that can be reached with each of these
pairings. The total set of ranges must cover
the intended operational range (10 MHz to
157 MHz). Since there are 65 valid N1 val-
ues and 6 valid HS_DIV values, there are
390 valid pairings, so there are 390 valid fre-
quency ranges in this working table.

2) Examine the working set of pre-calcu-
lated frequency ranges for the N1 and HS_
DIV pairings and select the minimum number
of frequency ranges (bands) that can span the
intended operational range of 10 to 157 MHz
without gaps while starting and ending on
MHz boundaries. Look for the bands with the
widest frequency spans while also looking for
the lowest N1 values and highest HS_DIV
values. The total number of bands is limited
by the size of a microcontroller memory
bank (96 bytes) and each band entry requires
4 bytes, so 24 bands are possible.

3) Create a table that contains entries for
the lowest frequency of each of the 24 bands.

4) Create a table of 1 byte entries for
the selected bands, with each entry being
constructed by multiplying the selected N1
by the HS_DIV value and then dividing the
product by 2. If the N1 and HS_DIV pairings
selected in Step 2 do not fit into 1 byte after
they are multiplied and divided by 2, then
rework the band selection tables. This may
force the selection of some non-optimal N1
and HS_DIV pairings. It also limits the total
operational range.

Note that no significant figures are lost
in dividing the N1 and HS_DIV product by
2, since each valid N1 is an even number (or
1). The RFREQ calculations will take into
account the fact that this division by 2 has
taken place.

5) Construct the table, which contains
entries combining Fxtal with N1 and HS_

Figure 12 — This oscilloscope display shows the I2C communications, with SDA/SDC
signals in the PEgen570 software application.

142

10 QEX – July/August 2011

DIV for the corresponding frequency bands.
Each entry will be Fxtal / (N1 × HS_DIV).

6) To calculate RFREQ for a given fre-
quency, retrieve the appropriate table entry
containing Fxtal / (N1 × HS_DIV) and divide
the desired output frequency by this value.
The result of this division must be a 10 bit
integer and a 28 bit fraction.

7) Position N1, HS_DIV and RFREQ in
the command packet to be sent via I2C to the
Si570 control registers. To be exact, store
(N1 – 1) instead of N1 and store the 3 bit

DCO Freeze Handling
Earlier in the article, I described the Si570

requirement for a DCO freeze when updating
the frequency, if the frequency has moved by
more than 3500 ppm (0.35%) from the last
freeze frequency.

The software keeps track of the frequency
at which the last freeze operation was done.
If the difference between the new frequency
and the last freeze frequency is more than
0.35% of the last freeze frequency, the freeze

Table 5
RFREQ Extracted From Nonvolatile Memory

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 0 1 0 1 0 0 1 1 0x53
Si Reg 8 1 1 0 0 0 0 1 0 0xC2
Si Reg 9 1 0 1 0 0 0 0 0 0xA0
Si Reg 10 0 1 0 1 0 0 0 0 0x50
Si Reg 11 1 1 1 0 1 0 0 1 0xE9
Si Reg 12 1 1 1 1 1 1 0 1 0xFD
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]

index corresponding to the selected HS_DIV
value.

This scheme provides a relatively quick
Si570 frequency update with some table
look-ups and a single division. This single
mathematical operation is not a simple one,
however, since it divides a 40 bit integer
value by a 32 bit integer value and results in a
10 bit integer and a 28 bit fraction positioned
such that the five bytes can be directly loaded
into the Si570 registers.

Table 3
RFREQ in Si570 Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 X X X X X X X X 0xXX
Si Reg 8 X X 0 0 0 0 1 0 0x02
Si Reg 9 1 1 0 1 1 1 1 0 0xDE
Si Reg 10 0 1 0 1 1 0 1 0 0x5A
Si Reg 11 1 0 0 0 1 1 0 1 0x85
Si Reg 12 0 1 0 1 0 1 0 0 0x55
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]

Table 4
RFREQ, HSDIV and N1 in Si570 Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 1 1 1 0 1 0 0 0 0xE8
Si Reg 8 0 1 0 0 0 0 1 0 0x42
Si Reg 9 1 1 0 1 1 1 1 0 0xDE
Si Reg 10 0 1 0 1 1 0 1 0 0x5A
Si Reg 11 1 0 0 0 1 1 0 1 0x85
Si Reg 12 0 1 0 1 0 1 0 0 0x55
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]

143

 QEX – July/August 2011 11

and unfreeze operations are done along with
the frequency update. Rather than doing
another large division operation, the actual
calculation is performed in a simplified
manner by determining whether or not the
new DCO frequency (Fxtal × RFREQ) has
moved by more than 0.35%. Since Fxtal is
a constant, the worst case is found by taking
the lower limit of the integer portion of the
RFREQ (42) and multiplying by 0.35%.

42 × 0.35% = 0.147
Then, if the software determines the new

RFREQ is changed by more than the con-
stant 0.147 from the last freeze, a new freeze
is done.

Major Subroutines of PEgen570
The frequency selection scheme that is

used in PEgen570 was described earlier. This
routine is called when a frequency update is
needed. The job of this routine is to calculate
the 38 bit RFREQ value with a 10 bit integer
portion and a 28 bit fractional portion.

RFREQ = (Fout × HS_DIV × N1) / Fxtal
For quick calculation in a small micro-

controller, the combination of factors HS_
DIV, N1, and Fxtal are scaled, combined and
placed in a table indexed by the frequency
band number. Now, instead of multiplying
Fout by (HS_DIV × N1) / Fxtal, a table look-
up is done and a single division operation is
performed in which Fout is divided by the
reciprocal.

RFREQ = Fout / (Fxtal / (HS_DIV × N1))
This division is a 40 bit by 32 bit
operation.

(Note: Typical 32 bit by 32 bit integer
division routines result in an integer with the
remainder truncated but this division routine
performs additional cycles through the divi-
sion mechanism in order to calculate and
retain the fractional portion also.)

Sample calculation:
Fout = 14,025,000 (D60128
Hex)
Fxtal = 114,285,000 (6CFD9C8
Hex)
HS_DIV = 11 (D Hex)
N1 = 34 (22 Hex)
RFREQ (scaled by 228) =
2DE5A8555 (Hex)

The RFREQ value is scaled by 228. The
integer portion is 2D (Hex) and the fractional
portion is E5A8555 (Hex). The RFREQ
value is scaled in this manner so that it is
ready to be loaded into the Si570 registers as
shown in Table 3.

Later, when the HS_DIV and N1 values
are manipulated into the required form (HS_
DIV_Index and N1 – 1) and added to the
Si570 registers, the result is shown in Table 4.

The Si570 band tables for PEgen570
are described in Table 6. The entries of the
table are pre-calculated using the nominal
value for the Si570 internal crystal frequency

(114.285 MHz). The table entries, combining
the crystal frequency with other parameters
needed to generate RF in that frequency
range, are stored in the PIC EEPROM and
are loaded into the PIC volatile memory at
power-up. This nominal frequency is almost
never perfect, of course, but the Si570 is
calibrated in the factory to use corrected
parameter values in order to produce the
default start-up output frequency of exactly
10.00 MHz. (Other Si570 part numbers use
different start-up frequencies.)

By holding Pushbutton 3 down dur-
ing power-up, the application is directed to
retrieve the parameters from the Si570 non-
volatile EEPROM memory. The software
then does a “reverse calculation” to find the
actual Si570 crystal frequency as determined
by the factory to produce 10.00 MHz. After
the actual crystal frequency is determined, the
table entries are recalculated and copied back
to non-volatile EEPROM. When Pushbutton
3 is released, the PIC restarts and populates
the tables with the newly calculated values.

The SetupFxtal() routine is called at
calibration time only. It retrieves the Si570
registers from the part, extracts the HS_DIV,
N1, and RFREQ values, and uses this for-
mula to find the calibrated crystal frequency
as determined during manufacturing. The
default frequency for the Si570 being used
in this project (570CAC000107DG or
570CBC000107DG) is 10.0 MHz.

Normal frequency formula: Fout = (Fxtal
× RFREQ) / (HS_DIV × N1)

Rearranged to give: Fxtal = (Fout × HS_
DIV × N1) / RFREQ

The following steps are taken:
1) Extract HSDIV_Index from the Si570

words and convert to HS_DIV.
2) Extract (N1 – 1) from the Si570 words

and convert to N1.
3) Extract RFREQ from the Si570 words.
4) Multiply HS_DIV by N1.
5) Divide RFREQ by (HS_DIV × N1).
6) Divide by default Fout (10,000,000).
As an example, Table 5 shows values as

extracted from one Si570 with a 10 MHz
start-up frequency.

The values of the fields of the registrations
shown in Table 5 are as follows:

Extracted HS_DIV Index = 2 so HS_DIV
is 6.

Extracted (N1 – 1) = 4F (hex) which is 79
(dec) so N1 = 80 (dec).

Extracted RFREQ Integer = 2A (hex) or
42 (dec).

Extracted RFREQ Fractional = 050E9FD
(hex).

Note that RFREQ is scaled by 228. The
decimal value can be determined by convert-
ing the entire RFREQ value to decimal and
then dividing by 228.

RFREQ = 2A050E9FD (hex) =

11,279,591,933 (dec).
11,279,591,933 / 228 = 11,279,591,933 /

268,435,456 = 42.0197.
The CalDivide routine is used in the

SetupFxtal routine. It performs this calcula-
tion:

Calculate Fxtal with this formula:
Fxtal = (Fout × HS_DIV × N1) / RFREQ
Form used by routine:
Fxtal = (Fout / RFREQ) × HS_DIV × N1)
This requires a 40 bit by 40 bit division

followed by a 32 bit by 8 bit multiplication.
To retain important significant figures, Fxtal
is scaled by multiplying it by 256 before the
division, so Fout must also be scaled by 256
before performing the calculation.

Fxtal × 256 = (10,000,000 × 256) × (6 ×
80) / 42.0197

Fxtal = 114.231984 MHz (com-
p a r e t o 1 1 4 . 2 8 5 M H z n o m i n a l)
Note that this Fxtal value, extracted from one
sample Si570, is only 0.05% from nominal.

This Fxtal value, along with correspond-
ing HS_DIV and N1 values from the band
tables (described later), is then used to
recalculate all values in the HSN1FX table
in EEPROM. This table is copied from
EEPROM to working (SRAM) memory at
power-up so calibrated values will be used
for all subsequent RFREQ calculations.

Si570 Bands
The PEgen570 software is implemented

with 24 frequency bands. (Note that these
do not correspond to amateur bands.) Most
of the parameters that the Si570 requires to
produce the desired output RF signal are in
tables in program memory. These program
memory tables cannot be modified with
program instructions. These tables are used
by the application by using the band number
as an index.

One table is located in the PIC data mem-
ory, and can be modified. This table is popu-
lated by extracting values from EEPROM
upon power-up. This table consists of 24
entries, each entry containing a starting fre-
quency requiring 4 bytes. This means that the
24 band table requires 96 bytes of memory.
Since the maximum size of any single bank
of data memory in the 16F88 (or any “16F”
PIC for that matter) is 96 bytes, this deter-
mines the maximum number of bands that
can easily be handled in the PIC. With addi-
tional overhead the size could be expanded
and then the upper frequency could be
increased. The CMOS version of the Si570,
however (the version that the daughtercard is
designed to use), has a maximum frequency
of 160 MHz. This means the current 96 byte
table with an upper limit of 157 MHz is rea-
sonable for this Si570 version. The lower
limit of the Si570 is 10 MHz and the 96 byte
table also handles this limit.

The 24 PEgen570 bands were created by

144

12 QEX – July/August 2011

examining the Si570 spec sheet and mak-
ing calculations with a spreadsheet based on
the Si570 parameter requirements. Without
getting into the esoteric requirements of the
Si570 frequency generating parameters and
the formula involving several specific “mul-
tipliers,” the Si570 internal crystal frequency
and the desired output frequency, the fre-
quency range of each band was calculated.
The table was generated in such a way that
the major parameters for each band can be
pre-calculated and retrieved from tables when
changing frequency. This greatly minimizes
the number of complex calculations that must
be performed for each frequency change.

The 24 PEgen570 bands are defined in
Table 6.

Several tables were constructed, ready
for quick access by the frequency update
routines. Each table has one entry per band
(24 entries).

There is one table in EEPROM with each
4 byte entry containing a combination of
HS-DIV, N1 and Fxtal. The table is initially
populated with the default crystal frequency
(114.285 MHz) but this table is updated
during calibration with the actual crystal
frequency that is measured and stored in the
Si570 during manufacture.

Entries are constructed and scaled in this
manner:

HSN1FX = (Fxtal / (HS_DIV × N1)) ×
256

At first glance it would appear that one
byte is wasted per entry since multiplying by
256 appears to be simply shifting the origi-
nal number by 1 byte. It is not that simple.
The division operation results in a fractional
quotient so multiplying by 256 by continuing
the division for 8 additional steps preserves
important significant figures of the fractional
remainder. Subsequent calculations compen-
sate for this scaling factor.

Example: The entry for Band 0 (covering
10 - 11 MHz) is:

HSN1FX0 = (114,231,984) / (46 × 11))
× 256 = 57,793,256 (dec) = 371DAE8 (hex).

Note that with the nominal crystal fre-
quency the default entry would have been:

HSN1FX0 = (114,285,000) / (46 × 11))
× 256 = 57,820,079 (dec) = 37243AF (hex)

There is one table in volatile memory
(SRAM). This table is identical to the

HSN1FX table in EEPROM. Accessing
EEPROM during program execution is
relatively slow so this 24 entry table is cop-
ied from EEPROM to fast-access program
memory at power-up time (4 bytes per entry).

These tables have one entry per band in
program (FLASH) memory.

1) SiBandTable — A table containing the
lower limits (in MHz) of the frequencies for
each band (4 bytes per entry).

2) BandN1Minus1 — A table containing
the selected N1 value for each band (1 byte
per entry).

3) BandHSDIVIndex — The selected
HSDIV Index for each band (1 byte per
entry).

4) BandHSN1D2 — The selected values
of HSDIV and N1 multiplied together and
divided by 2 (1 byte per entry). No significant
figures are lost in dividing the HS_DIV and
N1 product by 2 since each selected N1 is an
even number.

User Interface
The user interface for the PEgen570

application is very simple. It uses two push-
buttons, an encoder, and a 2-line by 16-char-
acter LCD. A simple menu for changing
configuration is activated via the two push-
buttons.

The “Reset” pushbutton on the PIC-EL
board is configured (via the CONFIG state-
ment in the source code) such that it does
not perform a microprocessor reset when
pressed but to operate as a normal I/O pin
instead. This made the pushbutton available
for operation and it is needed. To clarify
this change in usage, the pushbutton will
be referred to as Pushbutton 4 rather than

the Reset pushbutton. This means that the
PIC-EL board must be powered down and
up after loading new software into the PIC
before the new program will start executing.
Simply moving the slide switch from PGM
position to RUN position does not start the
PEgen570 program.

Pushbutton 3 and Pushbutton 4 are the
two operational pushbuttons. When running
the Si570, each time Pushbutton 3 is pressed
and released, the tuning digit that is currently
being modified by turning the encoder is
increased by one digit. It can be advanced up
to the 1 MHz position. Similarly, each time
Pushbutton 4 is pressed and released, the tun-
ing digit that is currently being modified by
turning the encoder is decreased by one digit.
The digit that is currently being modified by
the encoder is underlined.

When the program is running, pressing
and holding Pushbutton 3 for longer than
2 seconds stores the current frequency in
EEPROM. This frequency is used as the
start-up frequency on subsequent power-ups.

Menu
A simple menu is used for changing mode

between upper and lower sideband (USB,
LSB, CW+ or CW–). Then the user can turn
FSK on or off.

The menu is activated by holding
Pushbutton 4 while pushing Pushbutton 3
and then releasing them both. The current
mode is shown in character position 1 of
line 1 of the LCD. Now, tapping Pushbutton
3 allows the user to toggle through the four
sideband options, with the display showing
U, L, + or –. Tapping Pushbutton 4 leaves this
portion of the menu. Then FSK mode may be

Table 6
PEgen570 Bands

BAND Frequency Range BAND Frequency Range BAND Frequency Range BAND Frequency Range
0 10 - 11 MHz 6 19 - 21 MHz 12 36 - 41 MHz 18 81 - 90 MHz
1 11 - 12 MHz 7 21 - 23 MHz 13 41 - 47 MHz 19 90 - 101 MHz
2 12 - 13 MHz 8 23 - 25 MHz 14 47 - 54 MHz 20 101 - 111 MHz
3 13 - 15 MHz 9 25 - 28 MHz 15 54 - 61 MHz 21 111 - 128 MHz
4 15 - 17 MHz 10 28 - 32 MHz 16 61 - 70 MHz 22 128 - 135 MHz
5 17 - 19 MHz 11 32 - 36 MHz 17 70 - 81 MHz 23 135 - 157 MHz

Figure 13 — The first line of the LCD shows RFREQ.

145

 QEX – July/August 2011 13

enabled. The current FSK state is displayed
(either F or blank) in character position 1 of
line 1 of the LCD. Tapping Pushbutton 3 tog-
gles FSK mode between on and off. Tapping
Pushbutton 4 once again exits the menu.

Sideband Select Relay
An external latching relay is engaged or

disengaged as the sideband is changed in
the menu. PIC output ports RA6 and RA7
attach to HDR6 and HDR5 (pins 15 and 16)
respectively. As the sideband is changed in
the menu, either RA6 or RA7 is driven high
with an 8 ms pulse (with the opposite side
being held low) to engage or disengage the
external latching relay. The recommended
latching relay (TQ2-L-5V — DigiKey part
255-1004-5-ND) requires 14 mA at 5 V for
3 ms plus contact bounce time. The latching
relay is intended to enable the proper I and Q
phases of the transmitter and/or receiver to
set the correct sideband.

Sidetone During Receive (or FSK Shift)
Header HDR7, attached to PIC input port

RB7, is monitored by the software to deter-

mine whether or not to shift the frequency by
the sidetone amount if FSK is not active, or
to shift the frequency by the FSK shift size if
FSK is active. In CW+ or CW– mode, HDR7
is expected to be set to a low state by exter-

nal transmit/receive circuitry during receive
operations and to a high state during trans-
mit operations. The software continually
monitors the signal at HDR7 and, when it is
detected to be low while in CW– mode, shifts

Figure 15 — Here is the schematic diagram of a receiver using the Si570 P-PLL and a PC for audio processing.

Figure 14 — This block diagram represents a CW or SSB Receiver.

146

14 QEX – July/August 2011

Figure 16 — This schematic
diagram shows a receiver with
a low noise amplifier and an

audio section from the MicroR2
receiver by Rick Campbell,

KK7B. The receiver includes a
quadrature sampling detector

and the Si570 P-PLL.

147
 QEX – July/August 2011 15

the frequency down by 600 Hz from the
nominal, displayed frequency. If the mode is
CW+ and HDR7 is set LOW (receive), the
frequency is shifted up by 600 Hz from the
nominal, displayed frequency. In either case,
whenever HDR7 is detected to be HIGH,
indicating Transmit operation, the frequency
will be set back to the nominal frequency that
is displayed on the LCD.

When FSK mode is activated via the
menu, the frequency is set to the displayed
frequency when the signal on HDR7 is
HIGH (the MARK frequency) and is shifted
down by 170 Hz when the signal on HDR7
is LOW (the SPACE frequency).

How fast does it switch? The software
looks at the signal on HDR7 often enough

Figure 18 — This schematic diagram shows a 40 m CW Transmitter that uses the Si570 P-PLL as the local oscillator.

Figure 17 — A 40 m CW Transmitter is shown in this block diagram.

148

16 QEX – July/August 2011

Figure 19 — Here is a block diagram of a 40 m SSB Transmitter that uses the Si570 P-PLL
as the local oscillator.

to detect and change the frequency within
1.6 ms of HDR7 changing state. That’s fast
enough for QSK.

Liquid Crystal Display
The first line of the LCD shows the cur-

rent frequency. The second line is for debug
purposes and when debug mode is enabled,
shows the hex digits for the six Si570 fre-
quency-specifying registers (SiReg7 through
SiReg12) starting at LCD position 1. The
current band number is displayed in positions
15 and 16 of line 2.

The PEgen570 application can be config-
ured to display the Si570 frequency or it can
be configured to display the Si570 frequency
divided by two or four. The divide-by-four
option is useful when the signal generator is
being used as a signal source for a QSD/QSE
(“Tayloe”) mixer. The circuitry for these
mixers usually divides the input frequency by
four so this software option allows the LCD
to display the mixer’s operating frequency.

FSK Operation
PEgen570 has the capability of running

in FSK mode as well. When FSK mode is
enabled in the software, header HDR7 on
the Control Board is used for FSK modula-
tion. When HDR7 is modulated (header
pins “opened” or “shorted” by external
hardware circuitry) the frequency is shifted
from MARK (nominal frequency) to SPACE
(170 Hz below nominal displayed frequency).
When HDR7 is set high (not shorted to
ground) the software will command the Si570
to generate RF at the MARK frequency and
when HDR7 is set low (shorted to ground) the
software will command the Si570 to generate
RF at the SPACE frequency.

If the user is not interested in FSK opera-
tion, header HDR7 is available for re-com-
missioning.

Debug Mode
If debug mode is turned on (by pressing

and holding PB3 and PB4 during power-up),
the Si570 registers and the current Si570
band number are displayed on the second
line of the LCD, as shown in Figure 13.

Ideas for Future Modification
The source code of this software is avail-

able for download from the ARRL QEX web-
site, for experimenters to examine, change
and extend to accommodate personal prefer-
ences.4 A couple of items are easy to imagine:

1) Make the CW sidetone frequency
changeable. Currently the sidetone frequency
is fixed at 600 Hz. (600 Hz is added to or
subtracted from the base frequency during
receive operation and the base frequency is
restored during transmit operation.)

2) Display additional information on the
LCD: receive versus transmit, sidetone and
so on.

3) Startup frequency is now saved in
EEPROM. Add code to save other current
settings.

4) Personalize line 2 of the display with
the operator’s call sign.

Example Receivers and Transmitters
Using the Si570 Programmable PLL

Figure 14 shows a block diagram and
Figure 15 is a schematic diagram for a
receiver that uses the Si570 P-PLL and a
QSD to produce I and Q audio signals for
processing in a PC with software such as
the Rocky SDR software for the SoftRock
radio.5, 6

Figure 16 shows the schematic of the
Si570 LO and a QSD combined with a
MicroR2 low noise amplifier and audio pro-
cessing section designed by Rick Campbell,
KK7B.7 (Also see Note 1.)

Figure 17 is a block diagram showing the
Si570 LO and a QSD in a 40 m CW transmit-
ter. (See Note 1.) Figure 18 is the correspond-
ing schematic diagram. Figure 19 is a block
diagram of a 40 m SSB transmitter using the
Si570 programmable PLL.

Conclusion
The Si570 programmable PLL from

Silicon Labs opens up a myriad of new pos-
sibilities for Amateur Radio experimenters to
explore. I hope this article has given you some
ideas. To continue the discussion, please join
us on the PPLL-VFO YAHOO group (www.
groups.yahoo.com/group/ppll-vfo). Kits are
available from Bill Kelsey, N8ET, at Kanga
US; web page (www.kangaus.com) or e-mail
him at kanga@kangaus.com. For questions,
comments, source code and schematics see
the YAHOO group or my web page, www.
cbjohn.com/aa0zz, or contact me at aa0zz@
arrl.net. Happy experimenting!

Craig Johnson, AAØZZ, lives in St. Paul
Minnesota. He has a Bachelor’s degree in
Electrical Engineering and a Masters degree in
Business Administration. He worked for Unisys
for 35 years on the design and development of
large computers, and then switched to working
with microprocessors — hardware as well as
software — in the development of medical devices
and “smart” weapons for the military.

Craig earned his first Amateur Radio license
in 1964, at the age of 14. He credits ham radio
with sparking his interest in electronics, and
pointing him toward a career in electrical engi-
neering. For several years Craig led a team of
Volunteer Examiners and helped hundreds of
people in the St. Paul area earn or upgrade their
licenses. He still serves as a VE on occasion.
He is an active member of the Minnesota QRP
Society and QRP ARCI.

Craig is married and has three children. All
five members of his family are licensed Amateurs.
Craig enjoys CW, operating QRP, DXing and
contesting. He is happiest, however, when he is
tinkering, building or experimenting with new
designs, circuits and software. His current inter-
ests are centered around projects that use micro-
controllers, direct digital synthesis and digital
modes. He holds seven US Patents for his work in
computer hardware and software.

Notes
1Gerald Youngblood, AC5OG, “A Software-

Defined Radio for the Masses, Part 1”, QEX,
Jul/Aug 2002, pp 18-20.

2Craig Johnson, AAØZZ, “Learning to PIC
with a PIC-EL — Parts 1 and 2,” QST, May
2007 and June 2007 and “Pickle with a USB
Interface,” QST, Feb 2010.

3Craig Johnson, AAØZZ, “The IQPro: A High
Performance Quadrature DDS VFO” QEX,
May/June 2006, pp 8-22.

4The author’s program source code is avail-
able for download from the ARRL QEX
website. Go to www.arrl.org/qexfiles and
look for the file 7x11_Johnson.zip.

5Alex Shovkoplyas, VE3NEA; www.dxatlas.
com/Rocky/

6Tony Parks, KB9YIG; www.kb9yig.com/
7Rick Campbell, KK7B, “The MicroR2 – an

Easy to Build ‘Single Signal’ SSB or CW
Receiver”, QST, Oct 2006.

