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Programmable PLL (Si570) Local 
Oscillator for HF Receivers, 
Transmitters and Tranceivers  

1Notes appear on page 16.

The Silicon Labs Si570 is a versatile programmable phase locked loop IC with many 
possible Amateur Radio applications. This PLL synthesizer is one good example.

A new product has recently been devel-
oped by Silicon Labs, the Si570 DSPLL® 
programmable frequency synthesizer, and it 
has great potential for use in many Amateur 
Radio applications. Here we will explore 
some possible uses. Phase locked loop tech-
nology has been in use for many years, but 
the ability to use variable software-supplied 
loop parameters in PLL technology to 
directly generate square waves with fre-
quency resolutions of 1 Hz or better is now 
possible. The Si570 immediately puts the 
new technology into the sphere of uses that 
has recently been dominated by direct digital 
synthesis (DDS) products.

This AAØZZ Si570 daughtercard uses 
the Silicon Labs Si570 (CMOS version) 
and, when controlled by a microcontroller, 
can generate RF signals in the continuous 
range of 10 to 157 MHz. (Other versions of 
the Si570 can go up to 1.4 GHz.) When the 
daughtercard is incorporated into a control 
board, the Si570 daughtercard can easily be 
used as the local oscillator of an Amateur 
Radio transceiver. Since many amateurs use 
divide-by-four mechanisms in quadrature 
sampling detectors (QSD) — also known as 
“Tayloe” mixers — for their receivers and 
also in quadrature sampling exciters (QSE) 
for their transmitters, this Si570 daughter-
card can provide the local oscillator signal 
for these receivers and transmitters on the 80 
through 10 meter amateur bands.1

Si570 Operation
Figure 1 shows a block diagram of the 

Si570. The Si570 offers some significant 
advantages over the DDS parts that have 
been used by amateurs in applications in 
recent years. Two advantages are greatly 
reduced power consumption and the rela-
tively clean output without DDS byproducts 
(spurs). The Si570 uses a combination of 
DSP processing and a PLL topology with 
frequency selection parameters set by the 
user via an I2C serial communications link to 

generate the desired output frequency.
Silicon Labs offers several versions of 

the Si570 with different output options and 
frequency limits. I used a CMOS version of 
the Si570 for this project. It has a 10.0 MHz 
default frequency and a 160 MHz maximum 
frequency. The internal crystal of the Si570 
runs at a nominal 114.285 MHz. The crystal 
in any individual part will not oscillate at 
exactly this frequency, however. Since the 
crystal frequency is used in the frequency 
generation calculations for the Si570 input 
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parameter words, any deviation from nomi-
nal means that the Si570 generated frequency 
will not be accurate. Fortunately, Silicon 
Labs calibrates each individual part in the 
factory and saves the calibrated parameters 
in its nonvolatile memory to cause it to start 
up at the default frequency (in this case, 
10.0 MHz). The software can retrieve these 
parameters from the nonvolatile memory 
and thus calculate the calibrated crystal fre-
quency. This calibrated crystal frequency 
can then be used in subsequent calculations 
and the results will be much more accurate 
than they would be if the nominal crystal fre-
quency was used for the calculations.

Si570 Functional Description
The spec sheet of the Si570 is a real chal-

lenge to interpret. The description given here 
will not substitute for a thorough reading 
of the spec sheet but it will get you started. 
(You can find the full details on the Silicon 
Labs website at www.silabs.com/Support 
Documents/TechnicalDocs/si570.pdf.)

Command data bytes are sent from the 
controller to the Si570 registers by way of 
the standard I2C serial communications pro-
tocol. (The I2C communications protocol is 
described later in the article.) The basic con-
trol registers are shown in Table 1.

Si570 Output Frequency Generation
The Si570 has a digitally-controlled oscil-

lator (DCO), driven by a fixed-frequency 
crystal and PLL loop-control parameters. 
There are three frequency selection param-
eters that the software must set up for the 
Si570 to generate the desired output fre-
quency. The basic frequency generation 
formula is:

Fout = (Fxtal × RFREQ) / (HS_DIV × N1) 
where: 

F x t a l  i s  t h e  f i x e d  c r y s t a l  f r e -
quency  (114 .285  MHz  nomina l ) 
RFREQ is a 38 bit variable consisting 
of a 10 bit integer and a 28 bit fraction.  
HS_DIV can be 4, 5, 6, 7, 9 or 11. 
N1 can be 1 or any even integer between (and 
including) 2 and 128.

Additional parameter selection con-
straints are as follows. First, the DCO fre-
quency specified in the numerator of this 
equation (Fxtal × RFREQ) must always 
be in the range of 4.85 GHz to 5.67 GHz. 
Since the Fxtal value is 114.285 MHz, the 
RFREQ range is 42.44 to 49.613. This DCO 

range can be stretched to some extent, as 
evidenced by the default setup parameters 
set up in a sample Si570 with factory settings 
for 10 MHz (see the SetupFxtal routine later 
in the article).

The second constraint is to optimize for 
minimal power consumption. Many different 
combinations of RFREQ, N1 and HS_DIV 
that will produce a given output frequency 
are possible to use. The lowest value of N1, 
along with the highest value of HS_DIV 
results in the lowest power consumption.

Si570 Freeze DCO
When specifying the parameters for 

Table 1

Si570 Control Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Si Reg 7 HS_DIV_Index [2:0]                                                      (N1 – 1) [6:2]

Si Reg 8 (N1 – 1) [1:0]                                                                 RFREQ (integer) [37:32]

Si Reg 9 RFREQ (integer) [31:28]                                         RFREQ (fractional) [27:24]

Si Reg 10                                          RFREQ (fractional) [23:16]

Si Reg 11                                          RFREQ (fractional) [15:8]

Si Reg 12                                          RFREQ (fractional) [7:0]

Si Reg 135 RST_REG New Freq     Freeze M                                                   RECALL

Si Reg 137                 Freeze DCO

Figure 1 — Here is a simple block diagram illustrating the operation of the Silicon Labs Si570 
programmable PLL IC.
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changing the output frequency of the Si570, 
the current frequency must also be consid-
ered. Large frequency changes require the 
DCO to be stopped and restarted before it 
can jump to the new frequency while small 
changes do not. Freezing the DCO is done 
by setting the “Freeze DCO” bit (bit 4 in 
SiReg 137) before sending the normal fre-
quency update registers (Registers 7 - 12) 
to the Si570. After the frequency update the 
“Freeze DCO” bit is cleared to unlock the 
DCO.

If the difference between the new fre-
quency and the last freeze frequency is 
more than 3500 parts per million (0.35%) 
of the last freeze frequency, a DCO freeze is 
needed. Figure 2 shows the frequency range 
of the DCO oscillator (specified by Fxtal × 
RFREQ) and the frequency range that can 
be covered without a freeze. If the output 
change is less than 0.35% from the last 
freeze frequency, the DCO frequency is the 
only value that needs to be changed for the 
frequency update.

Why not just do a freeze/unfreeze on 
every frequency update and skip the calcula-
tion to determine whether or not it is neces-
sary? Because it can take a relatively long 
time (up to 10 ms) for the RF to “settle” 
on the new frequency and the RF output is 
stopped during this period. See Figure 3.

In this example, trace 1 is high during the 
freeze-update-unfreeze sequence (980 s) 
and trace 4 shows the RF dropout (220 s). 
The RF dropout that occurs when the Si570 
is stopped and restarted at the new frequency 
after a DCO freeze causes an audible pop in 
a receiver. See Figure 3B for an oscilloscope 
screen shot of the audio pop. Channel 1 is 
high during the DCO freeze and Channel 2 is 
the audio. Small frequency changes without 
a DCO freeze do not cause the pop sound.

Freeze M
It takes a measureable amount of time 

Figure 2 — This 
drawing illustrates the 
frequency range that 

does not require a 
DCO Freeze operation 

before changing 
frequency. A larger 

change will require a 
DCO Freeze operation 

first.

Figure 3 — Part 
A shows an 

oscilloscope display 
of the RF dropout 
following a DCO 

Freeze. Part B shows 
an oscilloscope 

display of the audio 
“pop” that follows a 

DCO Freeze.

Figure 4 — Here 
is an oscilloscope 

display of the 
Si570 RF output at 

14.025 MHz.

Figure 5 — A basic test circuit to measure 
the Si570 output impedance.
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to send the six frequency configuration 
(RFREQ and loop parameter) bytes to the 
Si570 registers via the I2C communications 
link. (It takes 120 s if sent at the maximum 
I2C communications link speed of 400 kHz 
and 667 s in the PEgen570 application 
with an I2C rate of 72 kHz.) As the six bytes 
are being sent, one bit at a time, the Si570 
is using the registers to spray RF signals at 
undesired frequencies. Granted, the time is 
short and the RF signal is often not being 
transmitted while the frequency is being 
changed so this random RF would not be 
going far, but it could be a significant prob-
lem for FSK (where the transmitter stays on 
as it shifts between the MARK and SPACE 
frequencies) or for other digital modes.

The FREEZE M feature solves this 
problem. The FREEZE M bit (Bit 5 in con-
figuration byte 135) is designed to be set 
just before the frequency update is done and 
cleared after all six bytes are transferred. 
Note that this is different from the FREEZE 
DCO functionality, which is required when 
the frequency changes by more than 0.35% 
from the last freeze. The FREEZE DCO 
function will continue to be used; however, 
this is for the small frequency updates in 
which a FREEZE DCO is not needed. This 
new FREEZE M functionality causes the 
frequency update in the Si570 to be frozen 
until the FREEZE M bit is cleared. By then, 
all of the new frequency bytes are ready to 
be used and the Si570 jumps directly to that 
frequency.

Si570 RF Output and Output 
Impedance

The Si570 RF output is close to a square 
wave. An example of a CMOS Si570 run-
ning at 14.025 MHz into a 50  load is 
shown in Figure 4. Here the output RF signal 
level is about 1.7 V p-p.

Calculations were done to determine the 
output impedance of the Si570. The basic test 
circuit is shown in Figure 5. 

First the output voltage, V, is measured 
with no load resistor. This is the same as 
the source voltage, since there is no current 
through Z at this time. Then a shunt resis-
tor with known resistance is placed across 

the output and the voltage, VL, is measured. 
Using the following equations, the output 
impedance is calculated.

I = V / (Z + RL)
VL = RL × I 
VL = RL × V/ (Z + RL)
Z = RL × ((V – VL) / VL)
An 18  load resistor in the test circuit 

produced the following results:
V = 3.8 V
VL = 3.4 V
Z = 18 × ((2 – 1.2) / 1.2) = 12 
This means that a 38  series resistor 

could be used to match the Si570 RF output 
to a 50  load.

I2C Communications
The control interface to the Si570 is an 

I2C-compatible 2-wire bus for bidirectional 
communication. The I2C address for an 
Si570 is always 55 (hex). Since the slave 
address for I2C is a 7 bit field, the most sig-
nificant bit is truncated and the direction bit 
(0 for a Write operation) is placed in the least 
significant bit of this byte. For a Write com-

Table 2
The I2C bit order.

Start Slave Adr + Dir Ack Data Ack Data Ack Stop
 1010101 0  xxxxxxxx  xxxxxxxx

Figure 6 — The IC2 data transfer timing diagram.

mand to the Si570, the bit order is as shown 
in Table 2. The operation and timing of the 
two I2C signals on the bidirectional bus is 
illustrated in Figure 6. 

When the source device and the destina-
tion device are communicating via the bidi-
rectional I2C protocol, and they are operating 
with different voltage levels, hardware cir-
cuitry is necessary to translate the voltages. 
Many different schemes have been devised 
but a very simple and effective method, with-
out the need for direction control signals, is 
described in the I2C Bus specification. With 
a single source (a PIC microcontroller) and a 
single destination (an Si570) the level shift-
ing mechanism is as shown in Figure 7.

The level shifter consists of one discrete 
N-channel enhancement MOSFET for the 
serial data SDA bus line and one for the serial 
clock SCL bus line. The MOSFET gates are 
connected directly to the lowest supply volt-
age. The sources of the two MOSFETs are 
connected to the SDA and SCL bus lines on 
the 3.3 V device and the MOSFET drains 
are connected to the SDA and SCL bus lines 

Figure 7 — This circuit shows an I2C level shifter.
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Figure 8 — The Si570 daughtercard schematic diagram. 

Figure 9 — This photo shows the Si570 daughtercard.
Figure 10 — Here, the Si570 daughtercard is plugged into the PIC-EL 

III board.
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on the 5 V device. Each of these BS170 
MOSFETs has an internal diode between the 
drain and source. 

When neither device is pulling down a 
bus line (either SDA or SCL), the bus lines 
on the 3.3 V side are pulled up by the pull-up 
resistors R3 and R4 to 3.3 V. Since the gate 
and the source voltages of both MOSFETs 
are at 3.3 V, the Vgs voltages are below 
the turn-on threshold voltages so neither 
MOSFET is conducting. This allows the bus 
lines at the 5 V side to be pulled up by the 
pull-up resistors R1 and R2 to 5 V. The bus 
lines of both sides are HIGH but at different 
voltage levels.

When the 3.3 V device pulls down a 
bus line (SDA or SCL) to a LOW level, the 
source of the MOSFET also becomes LOW 

while the gate stays at 3.3 V. As Vgs rises 
above the threshold, the MOSFET starts to 
conduct. The bus line on the 5 V side is also 
pulled down to a LOW level by the 3.3 V 
device via the conducting MOSFET. Both 
sides of the bus lines are LOW and at the 
same voltage level.

When the 5 V device pulls down a bus 
line (SDA or SCL) to a LOW level, the 
source of the MOSFET is also pulled to a 
LOW level via the drain-source diode inter-
nal to the MOSFET. As the source is pulled 
down, Vgs passes the turn-on threshold and 
the MOSFET starts to conduct. The bus line 
of the 3.3 V side is then further pulled down 
to a LOW level of the 5 V side via the con-
ducting MOSFET. Both sides of the bus lines 
are LOW and at the same voltage level.

Si570 Daughtercard
The daughtercard schematic is shown in 

Figure 8. It has two voltage regulators. One 
converts 12 V to 5 V and the other converts 
5 V to 3.3 V. Why not just bring a 5 V line 
from the PIC-EL to the daughtercard and 
avoid the 12 to 5 V regulator? Two volt-
age regulators are used because the PIC-EL 
daughtercard connector was designed to 
deliver 12 V for a DDS-30/60 daughter-
card from the American QRP Club (www.
amqrp.org), and the goal of this project was 
to use the existing PIC-EL circuitry without 
making hardware modifications.

Other versions of the Si570 have higher 
frequency limits but with reduced amplitude 
output. The spec sheet for the CMOS version 

Figure 11 — This circuit is the Si570 control board schematic diagram.
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says it operates between 10 and 160 MHz, 
but some users report it can be used between 
3.5 and 240 MHz.

The daughtercard can be used in many 
different platforms. I will describe a couple 
of examples.

Daughtercard with PIC-EL
One platform for the Si570 daughtercard 

(Figure 9) is the AAØZZ PIC-EL board 
(Figure 10). The PIC-EL board provides a 
very convenient platform for experiment-
ing with the software to operate the Si570. I 
described the PIC-EL board in several QST 
articles.2

The Si570 daughtercard was designed to 
fit into an 8-pin socket on the PIC-EL board 
that was originally designed to accommodate 
an AmQRP DDS-30 or DDS-60 daughter-
card The DDS daughtercard operates with 
three control lines. The Si570 daughtercard is 
simpler in that it operates with two commu-
nications lines. The communications scheme 
used by the Si570 is I2C and that means the 
lines are both bidirectional. This presents a 
problem for the PIC-EL, since two of the 
three PIC lines that go to the daughtercard 
interface are also shared by the LCD and 
the other line is shared with the program-
mer. This sharing of pins prevents two-way 
communications via I2C with these lines. 
The workaround is to use an external cable 
to connect the daughtercard to the PIC-EL’s 
paddle jack. The paddle jack connects to dif-
ferent PIC pins and these pins are only shared 
with PIC-EL Pushbuttons 2 and 3. These two 
pushbuttons cannot be used when operating 
the Si570 daughtercard but otherwise the 
lines work well for I2C communications. 

The header (HDR2) on the daughtercard 
is a 2×2 connector block that is not used 
when the daughtercard is used in a PIC-EL 
with the external cable. 

Daughtercard with Control Board
The Control Board schematic is shown 

in Figure 11.
When the daughtercard is used with a 

dedicated control board instead of a PIC-EL, 
then header HDR2, the 2×2 connector block, 
is put into use and the external cable from the 
stereo jack on the daughtercard to the driver 
platform is not needed. Two jumpers are 
installed in this header block (1 to 4 and 2 to 
3) to route the I2C communications through 
the 8-pin interface connector.

The current required by the Si570 daugh-
tercard alone is about 100 mA and the total 
current required by the daughtercard and 
the Control Board with LCD active is about 
160 mA.

PEgen570 Software Application
The sample application software for 

the AAØZZ Si570 daughtercard is called 

PEgen570. It runs on a simple, inexpensive 
16F88 PIC in the PIC-EL board. There are 
several reasons why the 16F88 was selected 
for this application instead of the PIC-EL 
standard 16F628A:

1) Compared to the 16F628A, the 16F88 
has twice as much FLASH memory (for pro-
gram instructions), 50% more data memory 
(for variable storage and tables) and twice 
as much EEPROM memory (non-volatile 
storage).

2) The 16F88 has an 8 MHz internal oscil-
lator while the 16F628A has a 4 MHz internal 
oscillator. The extra speed is helpful.

Obviously, the user interface in the 
PEgen570 app is much simplified from the 
user interface in my IQPro DDS VFO but the 
application was simplified such that it could 
be developed and debugged on the PIC-EL 
board.3

Figure 12 shows an oscilloscope snapshot 
of the start of an I2C communication sequence 
in which the control board is sending a fre-
quency update to the daughtercard. The I2C 
communications sequence begins with the 
falling edge of the SDA line (Channel 2) 
while the SCL line (Channel 1) is high. The 
next bits show the beginning of the 55 (hex) 
device address (lower 7 bits) as described in 
the I2C Communications section. The clock 
rate in this implementation is 72 kHz. Since 
the Si570 can handle speeds up to 400 kHz, 
this rate is well below the limit.

Frequency Selection Method
The methods for selecting N1, HS_DIV 

and calculating RFREQ for every frequency 
update are many. They can also be very time 
consuming, so optimization is especially 
important for a small microcontroller. For this 
reason, the following scheme was developed.

1) Create a list of pairings of all valid N1 

and HS_DIV values. Calculate the frequency 
ranges that can be reached with each of these 
pairings. The total set of ranges must cover 
the intended operational range (10 MHz to 
157 MHz). Since there are 65 valid N1 val-
ues and 6 valid HS_DIV values, there are 
390 valid pairings, so there are 390 valid fre-
quency ranges in this working table.

2) Examine the working set of pre-calcu-
lated frequency ranges for the N1 and HS_
DIV pairings and select the minimum number 
of frequency ranges (bands) that can span the 
intended operational range of 10 to 157 MHz 
without gaps while starting and ending on 
MHz boundaries. Look for the bands with the 
widest frequency spans while also looking for 
the lowest N1 values and highest HS_DIV 
values. The total number of bands is limited 
by the size of a microcontroller memory 
bank (96 bytes) and each band entry requires 
4 bytes, so 24 bands are possible.

3) Create a table that contains entries for 
the lowest frequency of each of the 24 bands.

4) Create a table of 1 byte entries for 
the selected bands, with each entry being 
constructed by multiplying the selected N1 
by the HS_DIV value and then dividing the 
product by 2. If the N1 and HS_DIV pairings 
selected in Step 2 do not fit into 1 byte after 
they are multiplied and divided by 2, then 
rework the band selection tables. This may 
force the selection of some non-optimal N1 
and HS_DIV pairings. It also limits the total 
operational range.

Note that no significant figures are lost 
in dividing the N1 and HS_DIV product by 
2, since each valid N1 is an even number (or 
1). The RFREQ calculations will take into 
account the fact that this division by 2 has 
taken place.

5) Construct the table, which contains 
entries combining Fxtal with N1 and HS_

Figure 12 — This oscilloscope display shows the I2C communications, with SDA/SDC 
signals in the PEgen570 software application.
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DIV for the corresponding frequency bands. 
Each entry will be Fxtal / (N1 × HS_DIV).

6) To calculate RFREQ for a given fre-
quency, retrieve the appropriate table entry 
containing Fxtal / (N1 × HS_DIV) and divide 
the desired output frequency by this value. 
The result of this division must be a 10 bit 
integer and a 28 bit fraction.

7) Position N1, HS_DIV and RFREQ in 
the command packet to be sent via I2C to the 
Si570 control registers. To be exact, store 
(N1 – 1) instead of N1 and store the 3 bit 

DCO Freeze Handling
Earlier in the article, I described the Si570 

requirement for a DCO freeze when updating 
the frequency, if the frequency has moved by 
more than 3500 ppm (0.35%) from the last 
freeze frequency. 

The software keeps track of the frequency 
at which the last freeze operation was done. 
If the difference between the new frequency 
and the last freeze frequency is more than 
0.35% of the last freeze frequency, the freeze 

Table 5
RFREQ Extracted From Nonvolatile Memory

Register Bit 7 Bit 6 Bit 5  Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 0 1 0  1 0 0 1 1 0x53
Si Reg 8 1 1 0  0 0 0 1 0 0xC2
Si Reg 9 1 0 1  0 0 0 0 0 0xA0
Si Reg 10 0 1 0  1 0 0 0 0 0x50 
Si Reg 11 1 1 1  0 1 0 0 1 0xE9
Si Reg 12 1 1 1  1 1 1 0 1 0xFD
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]

index corresponding to the selected HS_DIV 
value.

This scheme provides a relatively quick 
Si570 frequency update with some table 
look-ups and a single division. This single 
mathematical operation is not a simple one, 
however, since it divides a 40 bit integer 
value by a 32 bit integer value and results in a 
10 bit integer and a 28 bit fraction positioned 
such that the five bytes can be directly loaded 
into the Si570 registers.

Table 3
RFREQ in Si570 Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 X X X X X X X X 0xXX
Si Reg 8 X X 0 0 0 0 1 0 0x02
Si Reg 9 1 1 0 1 1 1 1 0 0xDE
Si Reg 10 0 1 0 1 1 0 1 0 0x5A 
Si Reg 11 1 0 0 0 1 1 0 1 0x85
Si Reg 12 0 1 0 1 0 1 0 0 0x55
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]

Table 4
RFREQ, HSDIV and N1 in Si570 Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
Si Reg 7 1 1 1 0 1 0 0 0 0xE8
Si Reg 8 0 1 0 0 0 0 1 0 0x42
Si Reg 9 1 1 0 1 1 1 1 0 0xDE
Si Reg 10 0 1 0 1 1 0 1 0 0x5A 
Si Reg 11 1 0 0 0 1 1 0 1 0x85
Si Reg 12 0 1 0 1 0 1 0 0 0x55
SiReg135
SiReg137

HS_DIV_Index [2:0]
(N1 – 1) [6:0]
RFREQ-integer [37:28]
RFREQ-fractional [27:0]
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and unfreeze operations are done along with 
the frequency update. Rather than doing 
another large division operation, the actual 
calculation is performed in a simplified 
manner by determining whether or not the 
new DCO frequency (Fxtal × RFREQ) has 
moved by more than 0.35%. Since Fxtal is 
a constant, the worst case is found by taking 
the lower limit of the integer portion of the 
RFREQ (42) and multiplying by 0.35%. 

42 × 0.35% = 0.147
Then, if the software determines the new 

RFREQ is changed by more than the con-
stant 0.147 from the last freeze, a new freeze 
is done.

Major Subroutines of PEgen570
The frequency selection scheme that is 

used in PEgen570 was described earlier. This 
routine is called when a frequency update is 
needed. The job of this routine is to calculate 
the 38 bit RFREQ value with a 10 bit integer 
portion and a 28 bit fractional portion. 

RFREQ = (Fout × HS_DIV × N1) / Fxtal
For quick calculation in a small micro-

controller, the combination of factors HS_
DIV, N1, and Fxtal are scaled, combined and 
placed in a table indexed by the frequency 
band number. Now, instead of multiplying 
Fout by (HS_DIV × N1) / Fxtal, a table look-
up is done and a single division operation is 
performed in which Fout is divided by the 
reciprocal. 

RFREQ = Fout / (Fxtal / (HS_DIV × N1))
This division is a 40 bit by 32 bit 
operation. 

(Note: Typical 32 bit by 32 bit integer 
division routines result in an integer with the 
remainder truncated but this division routine 
performs additional cycles through the divi-
sion mechanism in order to calculate and 
retain the fractional portion also.) 

Sample calculation:
Fout = 14,025,000 (D60128 
Hex)
Fxtal = 114,285,000 (6CFD9C8 
Hex) 
HS_DIV = 11 (D Hex)
N1 = 34 (22 Hex)
RFREQ (scaled by 228) = 
2DE5A8555 (Hex) 

The RFREQ value is scaled by 228. The 
integer portion is 2D (Hex) and the fractional 
portion is E5A8555 (Hex). The RFREQ 
value is scaled in this manner so that it is 
ready to be loaded into the Si570 registers as 
shown in Table 3.

Later, when the HS_DIV and N1 values 
are manipulated into the required form (HS_
DIV_Index and N1 – 1) and added to the 
Si570 registers, the result is shown in Table 4.

The Si570 band tables for PEgen570 
are described in Table 6. The entries of the 
table are pre-calculated using the nominal 
value for the Si570 internal crystal frequency 

(114.285 MHz). The table entries, combining 
the crystal frequency with other parameters 
needed to generate RF in that frequency 
range, are stored in the PIC EEPROM and 
are loaded into the PIC volatile memory at 
power-up. This nominal frequency is almost 
never perfect, of course, but the Si570 is 
calibrated in the factory to use corrected 
parameter values in order to produce the 
default start-up output frequency of exactly 
10.00 MHz. (Other Si570 part numbers use 
different start-up frequencies.) 

By holding Pushbutton 3 down dur-
ing power-up, the application is directed to 
retrieve the parameters from the Si570 non-
volatile EEPROM memory. The software 
then does a “reverse calculation” to find the 
actual Si570 crystal frequency as determined 
by the factory to produce 10.00 MHz. After 
the actual crystal frequency is determined, the 
table entries are recalculated and copied back 
to non-volatile EEPROM. When Pushbutton 
3 is released, the PIC restarts and populates 
the tables with the newly calculated values.

The SetupFxtal( ) routine is called at 
calibration time only. It retrieves the Si570 
registers from the part, extracts the HS_DIV, 
N1, and RFREQ values, and uses this for-
mula to find the calibrated crystal frequency 
as determined during manufacturing. The 
default frequency for the Si570 being used 
in this project (570CAC000107DG or 
570CBC000107DG) is 10.0 MHz.

Normal frequency formula: Fout = (Fxtal 
× RFREQ) / (HS_DIV × N1)

Rearranged to give: Fxtal = (Fout × HS_
DIV × N1) / RFREQ

The following steps are taken:
1) Extract HSDIV_Index from the Si570 

words and convert to HS_DIV.
2) Extract (N1 – 1) from the Si570 words 

and convert to N1.
3) Extract RFREQ from the Si570 words.
4) Multiply HS_DIV by N1.
5) Divide RFREQ by (HS_DIV × N1).
6) Divide by default Fout (10,000,000).
As an example, Table 5 shows values as 

extracted from one Si570 with a 10 MHz 
start-up frequency.

The values of the fields of the registrations 
shown in Table 5 are as follows:

Extracted HS_DIV Index = 2 so HS_DIV 
is 6. 

Extracted (N1 – 1) = 4F (hex) which is 79 
(dec) so N1 = 80 (dec).

Extracted RFREQ Integer = 2A (hex) or 
42 (dec).

Extracted RFREQ Fractional = 050E9FD 
(hex).

Note that RFREQ is scaled by 228. The 
decimal value can be determined by convert-
ing the entire RFREQ value to decimal and 
then dividing by 228.

RFREQ = 2A050E9FD (hex)  = 

11,279,591,933 (dec). 
11,279,591,933 / 228 = 11,279,591,933 / 

268,435,456 = 42.0197.
The CalDivide routine is used in the 

SetupFxtal routine. It performs this calcula-
tion:

Calculate Fxtal with this formula:
Fxtal = (Fout × HS_DIV × N1) / RFREQ
Form used by routine:
Fxtal = (Fout / RFREQ) × HS_DIV × N1)
This requires a 40 bit by 40 bit division 

followed by a 32 bit by 8 bit multiplication. 
To retain important significant figures, Fxtal 
is scaled by multiplying it by 256 before the 
division, so Fout must also be scaled by 256 
before performing the calculation.

Fxtal × 256 = (10,000,000 × 256) × (6 × 
80) / 42.0197

Fxtal = 114.231984 MHz (com-
p a r e  t o  1 1 4 . 2 8 5  M H z  n o m i n a l ) 
Note that this Fxtal value, extracted from one 
sample Si570, is only 0.05% from nominal.

This Fxtal value, along with correspond-
ing HS_DIV and N1 values from the band 
tables (described later), is then used to 
recalculate all values in the HSN1FX table 
in EEPROM. This table is copied from 
EEPROM to working (SRAM) memory at 
power-up so calibrated values will be used 
for all subsequent RFREQ calculations.

Si570 Bands
The PEgen570 software is implemented 

with 24 frequency bands. (Note that these 
do not correspond to amateur bands.) Most 
of the parameters that the Si570 requires to 
produce the desired output RF signal are in 
tables in program memory. These program 
memory tables cannot be modified with 
program instructions. These tables are used 
by the application by using the band number 
as an index. 

One table is located in the PIC data mem-
ory, and can be modified. This table is popu-
lated by extracting values from EEPROM 
upon power-up. This table consists of 24 
entries, each entry containing a starting fre-
quency requiring 4 bytes. This means that the 
24 band table requires 96 bytes of memory. 
Since the maximum size of any single bank 
of data memory in the 16F88 (or any “16F” 
PIC for that matter) is 96 bytes, this deter-
mines the maximum number of bands that 
can easily be handled in the PIC. With addi-
tional overhead the size could be expanded 
and then the upper frequency could be 
increased. The CMOS version of the Si570, 
however (the version that the daughtercard is 
designed to use), has a maximum frequency 
of 160 MHz. This means the current 96 byte 
table with an upper limit of 157 MHz is rea-
sonable for this Si570 version. The lower 
limit of the Si570 is 10 MHz and the 96 byte 
table also handles this limit. 

The 24 PEgen570 bands were created by 
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examining the Si570 spec sheet and mak-
ing calculations with a spreadsheet based on 
the Si570 parameter requirements. Without 
getting into the esoteric requirements of the 
Si570 frequency generating parameters and 
the formula involving several specific “mul-
tipliers,” the Si570 internal crystal frequency 
and the desired output frequency, the fre-
quency range of each band was calculated. 
The table was generated in such a way that 
the major parameters for each band can be 
pre-calculated and retrieved from tables when 
changing frequency. This greatly minimizes 
the number of complex calculations that must 
be performed for each frequency change.

The 24 PEgen570 bands are defined in 
Table 6.

Several tables were constructed, ready 
for quick access by the frequency update 
routines. Each table has one entry per band 
(24 entries). 

There is one table in EEPROM with each 
4 byte entry containing a combination of 
HS-DIV, N1 and Fxtal. The table is initially 
populated with the default crystal frequency 
(114.285 MHz) but this table is updated 
during calibration with the actual crystal 
frequency that is measured and stored in the 
Si570 during manufacture. 

Entries are constructed and scaled in this 
manner: 

HSN1FX = (Fxtal / (HS_DIV × N1)) × 
256

At first glance it would appear that one 
byte is wasted per entry since multiplying by 
256 appears to be simply shifting the origi-
nal number by 1 byte. It is not that simple. 
The division operation results in a fractional 
quotient so multiplying by 256 by continuing 
the division for 8 additional steps preserves 
important significant figures of the fractional 
remainder. Subsequent calculations compen-
sate for this scaling factor.

Example: The entry for Band 0 (covering 
10 - 11 MHz) is: 

HSN1FX0 = (114,231,984) / (46 × 11)) 
× 256 = 57,793,256 (dec) = 371DAE8 (hex).

Note that with the nominal crystal fre-
quency the default entry would have been:

HSN1FX0 = (114,285,000) / (46 × 11)) 
× 256 = 57,820,079 (dec) = 37243AF (hex)

There is one table in volatile memory 
(SRAM). This table is identical to the 

HSN1FX table in EEPROM. Accessing 
EEPROM during program execution is 
relatively slow so this 24 entry table is cop-
ied from EEPROM to fast-access program 
memory at power-up time (4 bytes per entry). 

These tables have one entry per band in 
program (FLASH) memory.

1) SiBandTable — A table containing the 
lower limits (in MHz) of the frequencies for 
each band (4 bytes per entry).

2) BandN1Minus1 — A table containing 
the selected N1 value for each band (1 byte 
per entry).

3) BandHSDIVIndex — The selected 
HSDIV Index for each band (1 byte per 
entry).

4) BandHSN1D2 — The selected values 
of HSDIV and N1 multiplied together and 
divided by 2 (1 byte per entry). No significant 
figures are lost in dividing the HS_DIV and 
N1 product by 2 since each selected N1 is an 
even number.

User Interface
The user interface for the PEgen570 

application is very simple. It uses two push-
buttons, an encoder, and a 2-line by 16-char-
acter LCD. A simple menu for changing 
configuration is activated via the two push-
buttons. 

The “Reset” pushbutton on the PIC-EL 
board is configured (via the CONFIG state-
ment in the source code) such that it does 
not perform a microprocessor reset when 
pressed but to operate as a normal I/O pin 
instead. This made the pushbutton available 
for operation and it is needed. To clarify 
this change in usage, the pushbutton will 
be referred to as Pushbutton 4 rather than 

the Reset pushbutton. This means that the 
PIC-EL board must be powered down and 
up after loading new software into the PIC 
before the new program will start executing. 
Simply moving the slide switch from PGM 
position to RUN position does not start the 
PEgen570 program.

Pushbutton 3 and Pushbutton 4 are the 
two operational pushbuttons. When running 
the Si570, each time Pushbutton 3 is pressed 
and released, the tuning digit that is currently 
being modified by turning the encoder is 
increased by one digit. It can be advanced up 
to the 1 MHz position. Similarly, each time 
Pushbutton 4 is pressed and released, the tun-
ing digit that is currently being modified by 
turning the encoder is decreased by one digit. 
The digit that is currently being modified by 
the encoder is underlined. 

When the program is running, pressing 
and holding Pushbutton 3 for longer than 
2 seconds stores the current frequency in 
EEPROM. This frequency is used as the 
start-up frequency on subsequent power-ups. 

Menu
A simple menu is used for changing mode 

between upper and lower sideband (USB, 
LSB, CW+ or CW–). Then the user can turn 
FSK on or off. 

The menu is activated by holding 
Pushbutton 4 while pushing Pushbutton 3 
and then releasing them both. The current 
mode is shown in character position 1 of 
line 1 of the LCD. Now, tapping Pushbutton 
3 allows the user to toggle through the four 
sideband options, with the display showing 
U, L, + or –. Tapping Pushbutton 4 leaves this 
portion of the menu. Then FSK mode may be 

Table 6
PEgen570 Bands

BAND Frequency Range BAND Frequency Range BAND Frequency Range BAND Frequency Range
0 10 - 11 MHz 6 19 - 21 MHz 12 36 - 41 MHz 18  81 - 90 MHz
1 11 - 12 MHz 7 21 - 23 MHz 13 41 - 47 MHz 19  90 - 101 MHz
2 12 - 13 MHz 8 23 - 25 MHz 14 47 - 54 MHz 20 101 - 111 MHz
3 13 - 15 MHz 9 25 - 28 MHz 15 54 - 61 MHz 21 111 - 128 MHz
4 15 - 17 MHz 10 28 - 32 MHz 16 61 - 70 MHz 22 128 - 135 MHz
5 17 - 19 MHz 11 32 - 36 MHz 17 70 - 81 MHz 23 135 - 157 MHz

Figure 13 — The first line of the LCD shows RFREQ.
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enabled. The current FSK state is displayed 
(either F or blank) in character position 1 of 
line 1 of the LCD. Tapping Pushbutton 3 tog-
gles FSK mode between on and off. Tapping 
Pushbutton 4 once again exits the menu.

Sideband Select Relay
An external latching relay is engaged or 

disengaged as the sideband is changed in 
the menu. PIC output ports RA6 and RA7 
attach to HDR6 and HDR5 (pins 15 and 16) 
respectively. As the sideband is changed in 
the menu, either RA6 or RA7 is driven high 
with an 8 ms pulse (with the opposite side 
being held low) to engage or disengage the 
external latching relay. The recommended 
latching relay (TQ2-L-5V — DigiKey part 
255-1004-5-ND) requires 14 mA at 5 V for 
3 ms plus contact bounce time. The latching 
relay is intended to enable the proper I and Q 
phases of the transmitter and/or receiver to 
set the correct sideband.

Sidetone During Receive (or FSK Shift)
Header HDR7, attached to PIC input port 

RB7, is monitored by the software to deter-

mine whether or not to shift the frequency by 
the sidetone amount if FSK is not active, or 
to shift the frequency by the FSK shift size if 
FSK is active. In CW+ or CW– mode, HDR7 
is expected to be set to a low state by exter-

nal transmit/receive circuitry during receive 
operations and to a high state during trans-
mit operations. The software continually 
monitors the signal at HDR7 and, when it is 
detected to be low while in CW– mode, shifts 

Figure 15 — Here is the schematic diagram of a receiver using the Si570 P-PLL and a PC for audio processing.

Figure 14 — This block diagram represents a CW or SSB Receiver.
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Figure 16 — This schematic 
diagram shows a receiver with 
a low noise amplifier and an 

audio section from the MicroR2 
receiver by Rick Campbell, 

KK7B. The receiver includes a 
quadrature sampling detector 

and the Si570 P-PLL.
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the frequency down by 600 Hz from the 
nominal, displayed frequency. If the mode is 
CW+ and HDR7 is set LOW (receive), the 
frequency is shifted up by 600 Hz from the 
nominal, displayed frequency. In either case, 
whenever HDR7 is detected to be HIGH, 
indicating Transmit operation, the frequency 
will be set back to the nominal frequency that 
is displayed on the LCD. 

When FSK mode is activated via the 
menu, the frequency is set to the displayed 
frequency when the signal on HDR7 is 
HIGH (the MARK frequency) and is shifted 
down by 170 Hz when the signal on HDR7 
is LOW (the SPACE frequency).

How fast does it switch? The software 
looks at the signal on HDR7 often enough 

Figure 18 — This schematic diagram shows a 40 m CW Transmitter that uses the Si570 P-PLL as the local oscillator.

Figure 17 — A 40 m CW Transmitter is shown in this block diagram.
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Figure 19 — Here is a block diagram of a 40 m SSB Transmitter that uses the Si570 P-PLL 
as the local oscillator.

to detect and change the frequency within 
1.6 ms of HDR7 changing state. That’s fast 
enough for QSK.

Liquid Crystal Display
The first line of the LCD shows the cur-

rent frequency. The second line is for debug 
purposes and when debug mode is enabled,  
shows the hex digits for the six Si570 fre-
quency-specifying registers (SiReg7 through 
SiReg12) starting at LCD position 1. The 
current band number is displayed in positions 
15 and 16 of line 2.

The PEgen570 application can be config-
ured to display the Si570 frequency or it can 
be configured to display the Si570 frequency 
divided by two or four. The divide-by-four 
option is useful when the signal generator is 
being used as a signal source for a QSD/QSE 
(“Tayloe”) mixer. The circuitry for these 
mixers usually divides the input frequency by 
four so this software option allows the LCD 
to display the mixer’s operating frequency.

FSK Operation
PEgen570 has the capability of running 

in FSK mode as well. When FSK mode is 
enabled in the software, header HDR7 on 
the Control Board is used for FSK modula-
tion. When HDR7 is modulated (header 
pins “opened” or “shorted” by external 
hardware circuitry) the frequency is shifted 
from MARK (nominal frequency) to SPACE 
(170 Hz below nominal displayed frequency). 
When HDR7 is set high (not shorted to 
ground) the software will command the Si570 
to generate RF at the MARK frequency and 
when HDR7 is set low (shorted to ground) the 
software will command the Si570 to generate 
RF at the SPACE frequency.

If the user is not interested in FSK opera-
tion, header HDR7 is available for re-com-
missioning.

Debug Mode
If debug mode is turned on (by pressing 

and holding PB3 and PB4 during power-up),  
the Si570 registers and the current Si570 
band number are displayed on the second 
line of the LCD, as shown in Figure 13.

Ideas for Future Modification
The source code of this software is avail-

able for download from the ARRL QEX web-
site, for experimenters to examine, change 
and extend to accommodate personal prefer-
ences.4 A couple of items are easy to imagine:

1) Make the CW sidetone frequency 
changeable. Currently the sidetone frequency 
is fixed at 600 Hz. (600 Hz is added to or 
subtracted from the base frequency during 
receive operation and the base frequency is 
restored during transmit operation.)

2) Display additional information on the 
LCD: receive versus transmit, sidetone and 
so on.

3) Startup frequency is now saved in 
EEPROM. Add code to save other current 
settings.

4) Personalize line 2 of the display with 
the operator’s call sign.

Example Receivers and Transmitters 
Using the Si570 Programmable PLL

Figure 14 shows a block diagram and 
Figure 15 is a schematic diagram for a 
receiver that uses the Si570 P-PLL and a 
QSD to produce I and Q audio signals for 
processing in a PC with software such as 
the Rocky SDR software for the SoftRock 
radio.5, 6

Figure 16 shows the schematic of the 
Si570 LO and a QSD combined with a 
MicroR2 low noise amplifier and audio pro-
cessing section designed by Rick Campbell, 
KK7B.7  (Also see Note 1.)

Figure 17 is a block diagram showing the 
Si570 LO and a QSD in a 40 m CW transmit-
ter. (See Note 1.) Figure 18 is the correspond-
ing schematic diagram. Figure 19 is a block 
diagram of a 40 m SSB transmitter using the 
Si570 programmable PLL. 

Conclusion
The Si570 programmable PLL from 

Silicon Labs opens up a myriad of new pos-
sibilities for Amateur Radio experimenters to 
explore. I hope this article has given you some 
ideas. To continue the discussion, please join 
us on the PPLL-VFO YAHOO group (www.
groups.yahoo.com/group/ppll-vfo). Kits are 
available from Bill Kelsey, N8ET, at Kanga 
US; web page (www.kangaus.com) or e-mail 
him at kanga@kangaus.com. For questions, 
comments, source code and schematics see 
the YAHOO group or my web page, www.
cbjohn.com/aa0zz, or contact me at aa0zz@
arrl.net. Happy experimenting!
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