
36

Gnuradio Companion module for openHPSDR Hermes / Metis SDR Radio

Tom McDermott, N5EG
3950 Southview Ter.
Medford, OR 97504
n5eg@tapr.org

Keywords: openHPSDR, Gnuradio, SDR, Hermes, Metis

Abstract

This paper discusses the design and implementation of software that provides an interface for the
OpenHPSDR Hermes/Metis Ethernet-based SDR transceiver module to Gnuradio. General design
requirements imposed by Gnuradio and the hardware itself are discussed. Some applications of
Gnuradio using this software are illustrated. The module has been tested with Hermes and should be
compatible with Metis. The module has been tested on Ubuntu 12.04, 12.10, and 13.04. It has been
tested at the time of this writing through the current version of Gnuradio 3.6.5

Introduction.
Gnuradio is an open, free software application
that can be used to rapidly prototype many
different kinds of digital signal processing tasks1.
It contains a number of modules for the
generation, processing, and consumption of
signals in digital format. Natively, gnuradio
processes signals in a fast path primarily in C++.
An associated program, Gnuradio Companion
(GRC)2 provides a GUI-based design surface for
instantiation, interconnection, configuration, and
setting parameters for the various modules.
Python is used in limited cases for additional
non-real-time aspects.

Most of the modules that come with gnuradio
provide computation-only capabilities, such as
the generation of random data streams in various
formats, processing (such as FFT, convolution,
filtering, etc, and consuming data streams (such
as oscilloscope, spectrum analyzer, constellation
domain, and other displays, as well as producing
audio output to the speakers on the host computer
via an audio output sink. In gnuradio, a source of
a data steam is called a source, the termination of
a data stream is called a sink.

While purely computational sources and sinks are
valuable, it is also desirable to be able to source
and sink actual data streams from hardware. A
couple of interface modules exist for gnuradio,
such as the low-cost SDR DVB-T dongle, and the
Ettus Research UPSR modules. This project
provides a software module that allows the
Ethernet interface on the openHPSDR based
Hermes and Metis modules to provide both
sources and sinks of data to gnuradio from the
hardware, and allows gnuradio computational
modules to process them. In general the gnuradio
computational modules are sufficiently fast that,
depending on the host computer, they can keep
up with the real-time nature of the data streams,
even as fast as 384k I+Q samples per second for
relatively large number of processing modules.
Older PC's however may be more limited in
processing capability.

The advantage to the gnuradio architecture is that
real-time software applications are designed and
debugged graphically without needing to write
DSP or other code.

The term Hermes will be used in the rest of this

37

paper to mean Hermes and/or Metis. To help in
reading the rest of this article, it is advisable to
download the source code tree from the TAPR
Subversion (SVN) repository, and refer to the
code, files, and folders for the following
discussion.

In this article the terms:
� Hermes means the actual physical

module,
� hermesNB is the software running on the

Linux system under gnuradio. The NB
means narrowband – the wideband raw
sample set from the ADC is not used, only
the narrowband digitally down-converted
and decimated samples are used by the
module.

Gnuradio Requirements
Most of the design of a gnuradio module is in C+
+. Additionally a simple XML module needs to
be written that provides the GUI interface for the
module being written for gnuradio companion.
The build of the modules is quite complex, and a
tool, called modtool.py3 is available to generate
the directory structure, build directory, and the
CMake files if you want to invent a new module.

Directory Structure
Modtool.py creates the directory structure
required to organize and build modules within
gnuradio and for gnuradio companion. Three of
the directories are of concern to those writing a
new module, the rest are needed but can be pretty
much left intact. It creates the subdirectories,
makefiles, cmake files, shell program files and
stubs. The process of making or installing a new
module is called an 'out-of-tree module' because
it's outside the standard build tree of gnuradio
(i.e. it is a user written module). Three directories
contain what needs to be edited:

� LIB – contains the C++ source code
modules for the out-of-tree module to be
written. A skeleton is auto-created for the
main module by modtool.

� INCLUDE – contains the C++ header

files for the C++ code in the LIB
directory. A skeleton is auto-created for
the main module.

� GRC – contains the XML file that
instructs GRC how to display the module
that is being written. Again, a skeleton is
auto-created.

There are multiple different CmakeLists.txt files,
different ones in the different directories. The one
located in the lib directory is hand edited to tell
the build which C++ files are to be compiled and
linked into the single gnuradio module.

For the Hermes interface four modules were
written:

metis.cc - Ethernet interface and device discovery
(borrowed and then modified from an early
version of the metis.c module written by John
Melton) and translated into C++.

hpsdr_hermesNB.cc - a gnuradio interface
module that instantiates and removes the
software interface called by the gnuradio
application. It is called directly from gnuradio
and needs to supply several well-defined
interfaces. The tool auto-creates a module with
the minimum set of needed interfaces created and
stubbed. Gnuradio uses the C++ boost library to
create reference-counted instances.

HermesProxy.cc - a Proxy that does most of the
work. This module provides a circular pool of
buffers for transmit and receive, queues transmit
and receive data, sends control register data to
Hermes, and receives status updates. It reads and
updates controls from the GUI control panel. It
also keeps count of the number of packets
transmitted and received, and determines if any
have been dropped. It displays status, Ethernet
and IP addresses, and packet counts on the GRC
status panel.

hpsdr_hermesNB.xml – a small XML formatted
module to interact with the GRC display
software, and display on-screen help for the
module. The xml module also defines the way

38

that grc hands parameters to the C++ code via
callbacks.

Installing Gnuradio
The gnuradio site contains a comprehensive
script to install and build gnuradio on an Ubuntu
machine from scratch. It will also check for and
install dependencies (such as the C++ compiler
and tool chain) automatically. A wget command
is provided4.

Installing hermesNB
To actually install the hermesNB module into
your instance of GRC, the hermesNB module for
gnuradio needs to be downloaded from the
subversion SVN repository hosted by TAPR.
Instructions for building it are on the TAPR SVN
in the /trunk/n5eg document “How to build
gnuradio Hermes-Metis.pdf” (it is built and
installed as an out-of-tree module). Modtool is
not needed since the files, directories, and make
files for hermesNB already have been completely
configured. The TAPR SVN repository contains
instructions on the use of the module itself as
well as the source code of all the files (released
under the GPL license). You can browse the
repository with either your web browser or
download using subversion. The URLs are
different for the browser and SVN.

Web URL: http://svn.tapr.org
Browse to OpenHPSDRMain, then to trunk/n5eg
where you will find the instructions, and current
source.

The Subversion URL is:
http://svn.tapr.org/repos_sdr_hpsdr/trunk/N5EG

When building the software it is recommended
that you check out the files from TAPR using
subversion since they will all get properly
located and the proper directories created. The
build instructions assume Ubuntu version 12 or
13, but it will probably build for other versions of
Linux as well.

Design Requirements
Gnuradio imposes some design limitations on

any module. One is that all the outputs from the
module must run at the same sample rate. In
general, the inputs can run at different sample
rates. For the Hermes implementation is was
decided to have a single input – the transmit
baseband sample stream, and one or two outputs,
representing the output stream(s) for one or two
receivers. The model could be extended to
additional receivers but two seems sufficient for
the kind of experiments most likely to be done
within gnuradio.
The output streams can run at 48k, 96k, 192k, or
384k rates supported by Hermes, and the input
runs at a fixed 48k rate. The input and output
samples are formatted as floating point I and Q
values. While Hermes itself has 16-bit 2's
complement resolution on transmit and 24-bit 2's
complement resolution on receive, the hermesNB
module converts all I/O to and from the 2's
complement fixed point format to the system
complex floating I/Q type for gnuradio use.

In addition to the transmit and receive data, the
hermesNB module also inserts and removes
command and control data to the module. In
Hermes, these C&C data are interleaved in
special positions within the ethernet frames sent
and received from the module. The hermesNB
module handles both setting and querying the
C&C data from the GUI as well as formatting it
for transmission and reception over Ethernet.

The I/O to the Hermes module is pretty low level
socket based I/O using the socket.h interface. The
first thing that the module does on startup is to
find the Hermes module by sending out a special
HPSDR broadcast packet that Hermes will
respond to. Once that has been found, it can then
start Ethernet I/O with that module itself. The
Ethernet interface on which the hermesNB code
operates is specified in the gui as a parameter,
defaulting to eth0. The module also provides a
little bit of I/O debug data on the GRC console
(which helps a lot in tracking down IP addresses,
Ethernet addresses, and which interfaces are
available to the system).

The receive I/O is started on a separate thread

39

and blocks awaiting the reception of Ethernet
frames from Hermes. In Ubuntu 13.04 the socket
can unblock on a system message without any
data, so additional code was added to handle
restarting the blocking system call when an
unimportant message is received. On receipt of
an Ethernet frame, the code validates the Ethernet
packet (length and header bytes), extracts the
actual I/Q samples and then packs the samples
into a buffer from a large circular pool of buffers
and returns.
Similarly, on transmit, the hermesNB code
checks to see if there are any fully-built Ethernet
frames ready to be sent to the actual Hermes
hardware, and if it is time to sent a packet. If so,
then it pulls the head packet for the transmit
circular buffer pool and transmits it. The buffers
are prebuilt into Ethernet packets and placed into
a transmit circular queue whenever a sufficient
number of transmit samples are available from
gnuradio.

The actual Hermes hardware has no way to
provide information as to when it needs another
transmit packet (queue status), nor a buffer
ready/done indication. However the receive
Ethernet frames from Hermes are completely
periodic, but they depend on the receive sample
rate and the number of receivers. Faster sample
rates and more receivers means that Ethernet
packets are sent more frequently by the Hermes
hardware to the hermesNB module.

The pacing of Ethernet transmit frames to
Hermes thus is determined by counting the
number of received frames from Hermes, and
then compensating for the receiver sample rate
and number of receivers to determine a ratio of
how many receive packets should be received for
each transmit packet to be sent. This is then
tested by the hermesNB module, and it queues
transmit frames at the correct periodicity to the
Hermes hardware.

The receive and transmit circular buffer pools
allow the hermesNB module to decouple the
transmission and reception of individual Ethernet
frames from the streaming of floating point

complex numbers to and from the gnuradio
computational engine itself. Gnuradio cannot
tolerate blocking of stream I/O, but it can be told
there is nothing available for the output
stream(s), or that the hermesNB module does not
wish to pull anything from the input stream.

The hermesNB module keeps careful count of the
transmitted and received Ethernet packets, and
also keeps count of the sequence numbers that
Hermes hardware inserts into the Ethernet
packets. It uses this to detect if any transmit or
receive frames were lost or corrupted at several
different points in the chain. These counts are
displayed (sometimes) when the hermesNB
module exits. Unfortunately sometimes GRC has
text queued on the console output and it prevents
the hermesNB module from achieving a
programmed shutdown. Nothing bad happens
except that the text sent to the console by
hermesNB is lost. If GRC has not queued text,
then hermesNB successfully sends the diagnostic
packet count information to the console.

Mutexes were placed in the transmit and receive
directions to prevent thread based problems, but
so far have not been needed as no packet errors
have been able to be traced to them. They are still
in the code in case they are needed is some future
version of gnuradio or linux, but are commented
out.

Application Figures
Figure 1 shows the properties panel of the
module itself, where the module properties can
be set. Note that parameters where the name is
not underlined cannot be changed at runtime.
Underlined parameters are set to default values at
module initialization. Changing them during
runtime requires creating a GUI control and
passing it's value to the module via a variable
name (all done from the GUI).

Figure 2 shows a single-signal SSB receiver
implementation using the phasing method
(provided by the Hilbert transform which is a
standard element built into gnuradio). It should
be noted that the Hermes hardware itself is FULL

40

DUPLEX. Thus controls to this gnuradio module
add the ability to mute RX when transmitting,
and to mute TX when receiving. Additionally,
because Hermes has separate transmit and
receive antenna connectors, the various muting
controls can be disabled and the unit can actually
run full duplex. The various controls provided
have been instantiated as GUI controls using the
GRC modules. The PTT control merely asserts a
digital signal usually used to key a T/R relay. But
it does not turn the transmitter on or off (the
Hermes transmitter hardware in fact cannot be
turned off).

Figure 3 shows a gnuradio model that takes the
zero-hertz I/Q carrier output and further
decimates it down to a sample rate of 24 samples
per second with a bandwidth of +/- 10 hertz. This
allows tracking the carrier offset frequency of
WWV whilst stripping the modulation off the
signal. This is applied to a large FFT and then
averaged to give a sort of power spectral density
of the received carrier frequency offset for
observing ionospheric Doppler shift with sub-
hertz resolution.

Figure 4 displays the runtime QT GUI widgets
from the SSB Receiver application of figure 2.

Figure 1 – The Hermes/Metis properties panel for gnuradio.

41

Figure 2 – Single signal SSB receive implementation in gnuradio using Hermes. The second
receiver channel is unused but enabled in this example.

Figure 3 – Double sideband with highly-decimated narrowband carrier output to GUI sink. This
is used to track the doppler shifted carrier offset frequency of WWV. The AM demodulated 10

kHz wide output is also sent to the computer soundcard.

42

Figure 4 – SSB Receive Control Panel – displays of GUI widgets from SSB Receiver Application
of figure 2.

1 The gnuradio wiki can be found at: http://gnuradio.org/redmine/projects/gnuradio/wiki

2 Using GRC avoids the need to generate python code to connect gnuradio blocks together. It's done
graphically instead. GRC is installed by the gnuradio build/install script.

3 Modtool.py is now installed by default (in very recent gnuradio builds), the out-of-tree build
information can be found at: http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules

4 The general gnuradio install notes page is at:
http://gnuradio.org/redmine/projects/gnuradio/wiki/InstallingGR#Using-the-build-gnuradio-script
The install script to build from scratch (the recommended way) is:

 wget http://www.sbrac.org/files/build-gnuradio && chmod a+x ./build-gnuradio && ./build-gnuradio

