An HF Frequency-Division
Multiplex (FDM) Modem

Steven Sampson, K5SOKC

Introduction

A popular new digital voice mode has been
FreeDV designed by David Rowe, VKSDGR. The
modem and speech vocoder were programmed in
the C++ and C languages. However, my language
of choice is usually Java, which is not your typical
Digital Signal Processing (DSP) language. It may
have a slower execution speed, but it does allow
for rapid prototype development using the Net-
beans Environment

(IDE).

Integrated Development

As far as digital voice is concerned, any conver-
sion speed faster than 10 ms is like a billionaire at
a garage sale. The power of the typical desktop
computer today, allows the Java double-precision
math implementation to easily run within this tim-
ing requirement. Working with the sound card is
also quite easy with this language.

This paper is about an FDM modem implementa-
tion, but in order to test the modem, I also trans-
lated the Codec2 speech vocoder into Java. That
left a simple GUI design to finish the prototype.

I've been interested in the Amateur Radio data
modes for most of my time in the hobby, and for
the FDM modem I wanted it to work in data, as
well as voice. I did not want to get bogged-down
in protocol requirements; however, so this modem
design should be considered a Layer 1 design, as
there is no addressing or handshaking at this stage.
Not even a Cyclic Redundancy Check (CRC).

For voice mode, any digital errors will be pro-

cessed by our ears and brains, as we don't have the
luxury of waiting for a data packet to be error
checked and corrected before converting to analog
audio. For the text mode, we can visually see any
typed errors, and then request a resend as needed.
Later we can add CRC, and ARQ protocols and
make the modes more rugged.

Modem Description

The FDM modem is a very interesting design. In
the day when Orthogonal FDM modems are
common-place, the FDM seems rather nostalgic.
Sometimes good enough, is good enough. It con-
sists of sixteen (16) Differential Quadrature Phase
Shift (DQPSK) subbands, or sometimes called
carriers, separated by 75 Hz. Each one of these
subbands sends two bits as one of four phases, for
a total of thirty-two (32) bits. There is also a syn-
chronization subband that uses Differential Binary
Shift Key (DBPSK) to send a pilot signal we can
use to send sixty-four (64) bits as odd and even 32
bit halves, and also provides a center frequency to
track with. The 64 bits being the magic number re-
quired by the speech vocoder, as it needs that
many bits to represent the digital voice. The mo-
dem operates at 50 baud. That is, the 16 subands
are sent 50 times a second and transmitting 32 bits
per baud. Thus, for sending both halves, the effec-
tive rate is 25 baud, or 64 bits at 25 times a sec-
ond. One speech frame is processed every 40 ms,
which is the Codec2 frame rate. This then provides
us with 1600 bits/sec, and fits in about 1.3 kHz of
bandwidth. The modem audio is also centered on
1500 Hz, which puts it in the middle of a typical
audio passband.

Rewriting the modem and codec into Java, I was
able to create two objects that we can use in future
applications. By instantiating these two objects,
and calling their exported methods, developers can

77



use the objects and ignore their inner design. The
objects are just black-boxes.

Expanding the Design

The object of this exercise; however, is to expand
the basic modem design a bit. We want to add a
text mode that works as simple as the voice mode.
That means we need some kind of Mode bit to
toggle between these two modes. A simple solu-
tion is to focus on our 64 bit requirement. So our
mode switch must be encoded into this size frame.
Therefore I designed a Header Frame to have a 32
bit synchronization (Sync) word (1ACFFCID
used in the satellite industry), followed by a 32 bit
Packet Definition (PD) word. This PD is sub-di-
vided into a four bit Version word, a four bit Mode
word, an eight bit Rollover Counter, and finally a
sixteen bit Sequence Number.

With that, we can create a receiver State Engine
that waits for the Sync word to finish, and then de-
codes the following PD word to setup for the next
frame decode. In order to fit all of this into the 64
bit frame sending rate, I have designed the modem
to send nine voice or text frames at a time. A total
of ten 64 bit frames that is called the superframe,
and results in a total of 640 bits.

In the text mode, we will send nine of these eight
byte frames per superframe (72 bytes total), and in
the voice mode we will send nine 64 bit vocoder
frames. As you can see, we will start losing our
real-time audio by 40 ms every 400 ms super-
frame, as we need to borrow one of the modems
frames to use as the header control word. Because
this is a half-duplex design, it isn't critical that we
have zero delay in the voice or text transmission.
Adding this Header Frame does reduce our effec-
tive modem bit rate. Instead of 1600 bit/sec of
pure data being sent, we now send 1536 bit/sec.
The 64 bits being lost to overhead.

78

Scrambling the Bits

One of my design objectives was to run an exper-
iment, where I scramble the data bits in order to
reduce the peak to average ratio you can see in the
frequency spectrum. The highs can be really high,
and the lows can be really low relative to each
PSK subband. With a scrambler, we can make it
look more like a constant amplitude noise. This is
the theory anyway. In order to scramble the data, I
created an RC4 object. The data to be sent is first
scrambled, and then sent to the modem. Since we
are using a fixed (unchangeable) key, this is not
considered encryption or hiding information.
There is no secret, thus the data remains plaintext.
This may seem a bit of legal semantics, but it is le-
gal in North America (at least) to scramble bits in
a modem.

The RC4 algorithm has been modified to include a
random Sequence Number, and a Rollover
Counter. This then allows us to send the scrambled
data in blocks, that if corrupted, do not affect any
other block. To decode the scrambled block, we
send the unscrambled PD word to the distant re-
ceiver. The receiver then plugs these values into its
RC4 decoder, and decodes the scrambled super-
frame of data. Worse case, if we lose the PD word
through corruption, we only have to throw out
nine voice or text frames (360 ms of data). You

might miss a vowel here and there.

Since all stations use the same key, the RC4
pseudo-random output bytes will always start with
the same number, and produce the same sequence.
This is how the receiver at the far end knows how
to synchronize and decode the data.

The problem is, our modem only sends 72 bytes in
our superframe, and the same random numbers
would be output in each of these. The period (360
ms) is too small. Thus, one method is to add a 16



bit Sequence Number to the random number gen-
erator. Then broadcast this sequence number to the
receivers, who can then synchronize their own
generators. Since this is a generic algorithm, we
also add an 8 bit Rollover Counter. When the se-
quence number overflows, we increment the
rollover counter, and we can then have very large
superframes with the same algorithm.

Now we can send a different 72 random bytes ev-
ery superframe, and everyone stays in sync. Dif-
ferent groups of random numbers are exclusive-or
with the data each superframe. The only hazard
being that the ionosphere or interference may cor-
rupt our transmission, in which case we have to
discard everything until the next superframe.

In our simple HF modem, the period is quite
small, and the sequence number and rollover
counter fields are grossly miss-sized, but since we
have to fill-up 64 bits with something anyway,
there would be no advantage in optimizing their
sizes, and we keep the generic features of the RC4
object class.

Receiving the Data

At the receiver end, we wait for a Sync word, and
extract the sequence and rollover values. A func-
tion in the RC4 then allows us to prime the gener-
ator with these values, and we then exclusive-or
the random bytes with the received data producing
our unscrambled vocoder bytes. We will receive
nine vocoder frames, and produce 360 ms of voice
audio when we send data to the Codec2 speech
vocoder.

Adding Functionality

The nice thing about having Mode bits, is that we
can now send text or data in various formats. In
this example, 72 bytes.

The mode switch doesn't have to be a physical

switch. We could also send text or data before and
after the voice. Another example might be sending
your GPS position along with an encoded symbol,
such as HQ, Mobile, Fixed, etc.

Improvement Areas

The current vocoder design uses 52 bits of data for
the voice, and 12 bits for the FEC. However, in
this modified design, the FEC is in the wrong
place. Any error in receiving the scrambled bits
will produce garbage, and the FEC bits won't help
correct anything after the fact. An alternative
vocoder is the 1600 bit/sec version. It outputs 64
bits of voice data, and no FEC. Fits easily where
the 1300 + 300 FEC fit before.

Alternative Scrambling

The above algorithm was brought about because
of the use of two or more modes. If only the voice
alone, or data alone mode was to be used, we
could simplify the scrambling algorithm. Like the
9600 baud modems of the last century, we can use
a short polynomial to scramble the bits. A good
choice is the 23 bit polynomial X”"23+X"18+1
which is used in many modem designs. I have cre-
ated two versions, one designed for 2 bit pairs, and
another for 4 bit quads. The QPSK bit pairs are
sent to the function on transmit, and the scrambled
bit pair is sent to the modulator. The reverse on re-
ceive. With this type of scrambler, you can syn-
chronize the modems with a long header. Sending
a bunch of sync characters, before sending the ac-
tual data. Also, sending some more syncs at the
end to flush the 23 bit polynomial register.

This algorithm, like the other, is prone to errors in
receiving the bits, so the FEC added to the 1300
mode, is after the fact, and you will generally have
more than three bad bits (the FEC maximum).
Here again, you will have to throw out the bad
frame, but the frame is small enough to be on the

79



order of a vowel, or small enough that you can re-
send the packet if using ARQ.

Conclusion

As you can see, all of these options can be fun to
play with. This is a fairly simple prototype, that
builds on the Open Source software developed by
David Rowe, that he has been engineered for our
general use. As a code base, | find it interesting to
expand and play with for purely hobby reasons.
Expanding the number of subbands for use on
VHF would also be interesting, and then you
could use much larger superframes.

Availability

The experimental code is available at my github
cloud: https://github.com/k5okc

80



