
98

ARDOP (Amateur Radio Digital Open Protocol)
A next generation digital protocol for HF and VHF/UHF

Rick Muething KN6KB Matthew Pitts N8OHU John Wiseman GM8BPQ

Abstract:

The popularity of low cost PCs and tablets with substantial DSP processing power and an increasing
awareness of digital signal processing in the amateur community have created an explosion of digital
modes. Some of the challenges this poses are lack of portability, inconsistent “virtual TNC” interfaces
and protocols optimized for single uses. ARDOP is a new protocol development which was targeted to
address these challenges. The development started in 2014 and Alpha testing of the ARDOP_Win
TNC (Windows version) was begun in April 2015. From the beginning the protocol was designed to
cover a wide spectrum of amateur uses and be fully documented with open sourced code to encourage
learning, experimentation, evolution and portability to other platforms both software and hardware.
Key words: ARQ, FEC, 4FSK, 8FSK, 16FSK, 4PSK, 8PSK, WINMOR, cyclic prefix, bandwidth
negotiation, automatic timing, open source and sound card protocols.

Introduction:

Today’s computing platforms (PCs, laptops, tablets and smart phones) pack more numeric processing
capability than expensive dedicated DSP hardware of just 10 years ago. This with simple low cost
sound cards/interfaces and modern radios with built in “sound cards” combine to make the setup and
experimentation of software generated digital modes an important part of our amateur radio hobby.
These modes range from simple keyboard and weak signal modes such as PSK31 and JT65 to more
complex high speed message/file modes with the ability to automatically adapt to changing signal
strength and propagation conditions. WINMOR [1] developed by one of the authors in 2008 has seen
good acceptance as a low-cost Pactor alternative in various messaging systems like Winlink 2000 and
BPQ32. Each generation of protocol and increase in low cost DSP equipment provides an opportunity
to expand both the performance and flexibility of software controlled digital modes. But the
development, optimization and support of a full featured digital protocol require a substantial
contribution of time and skills that should be spread over many applications, operating systems and
years of use. The development of ARDOP started with a short list of target objectives:

 Open Design promoting targeting to various computer, OS, and hardware platforms
 Wide range of bandwidths to optimize spectrum usage
 Automatic channel adaptability…ability to adjust to changing propagation and S:N
 Support for both connected ARQ (Automatic Retry reQuest) and multicast FEC (Forward

Error Correcting) transmission modes.
 Minimize interference potential (bandwidth negotiation and effective busy channel

detection)

99

 Flexible operating modes and radios. Compatibility with popular voice grade HF and
VHF/UHF transceivers using modulation optimized for the frequency of use.

 Full binary transmission and support for multi-language UTF-8 character sets.

These expanded over a period of months to first a skeleton specification and finally a full detailed
specification with detailed spread sheets showing the composition, bandwidth, robustness and speed of
several modes across a 200 to 2000 Hz (audio bandwidth) spectrum [2]. In deriving the specification
care was taken to provide avenues to encourage experimentation yet not impact the compatibility of
compliant implementations.

Virtual TNC with Host concept

The experience with hardware TNCs and the portability of virtual (software) TNCs such as WINMOR
has confirmed the benefit and flexibility of separating the “TNC” or modem function from the host
(user) application. This promotes portability and allows the same TNC code or hardware
implementation to be used (without change) in a variety of diverse applications such as keyboard
clients, messaging systems, tracking functions, sounding systems, emergency beacons, etc. We chose
this path to allow us to focus first on the protocol and TNC and not the final user host application. To
the user the virtual ARDOP TNC operates similar to a hardware TNC and like a hardware TNC can
display operating parameters or hidden away to avoid clutter. Figure 1 is an example of the ARDOP
Win TNC showing a small but rich panel to display operating parameters, transmission progress and
for the entertainment of the operator!

Fig 1. Screen capture of the ARDOP_Win TNC user interface/display

The virtual TNC can interface to the host program via a TCPIP connection (wired or wireless), a high
speed serial connection or a wireless Bluetooth connection. This permits not only flexibility but the
ability to operate the TNC/Radio combination remotely from the host software. Likewise a hardware
implementation of the protocol (e.g. PIC microprocessor with sound card chip) could interface to the
same host software and provide functional equivalence and compatibility. A simplified block Diagram
of the ARDOP TNC is shown in Figure 2.

100

Fig 2. ARDOP TNC Simplified Block Diagram

ARDOP Performance

Most amateurs familiar with digital modes are aware of the tradeoffs required when it comes to
robustness, bandwidth, signal strength and propagation quality. Some specialized modes can work
deep into the negative S:N regions but they are very slow…sometimes exchanging only call signs.
High speed modes permit sending large files and images but need fairly good signals, wider
bandwidths and minimal multipath propagation or path compensation. Even within a 10 minute QSO
or forwarding session wide variations in signal strength and propagation quality are often observed.
One solution to this problem is for the sending station to adjust modulation type and bandwidth based
on the current propagation channel. ARDOP uses a simple but effective mechanism to send the
received decode quality (basically a “score” of the last received frame’s symbol constellation) back to
the sending station with every ACK or NAK. During the development of ARDOP a HF channel
simulator was often employed to develop the modes, mechanisms and optimum FEC level to allow the
sending station to rapidly home in and maintain near optimum modulation (and bandwidth in some
cases). This allows the session to proceed with the highest data rate that can be supported with the
current S:N, propagation channel and bandwidth. Figure 3 shows two typical net throughput
measurements (200 Hz channel and 2 kHz channel) made during Alpha testing using long ARQ
sessions on an HF channel simulator across various HF channel types.

101

Fig 3. ARDOP performance over WGN (white Gaussian noise), MPP(multi-path poor)
and MPG (multi-path good) channel types for 200 and 2000 Hz bandwidths.

Future plans include experimenting with “training sequences” and DSP path compensation techniques
to allow higher performance during poor channel conditions.

Porting ARDOP to Other languages, OS and Platforms

Three significant challenges for this project from a programming perspective are as follows:
1) Porting the code from the initial rapid prototyping language used (Visual Basic .NET) to another
language more readily usable on the various target platforms.
2) Targeting multiple platforms, such as Linux, Mac OS X, iOS and Android.
3) Finding alternatives to specialized interfaces (sound card, Internet and I/O) that were used for
development of previous generations of applications by the same developers.
An interesting thing happens when you start looking into the various options and taking a hard look at
the source code. For this project, conversion of the VB.NET code to C# was chosen, as a few of the
source files were actually very similar to the original C/C++ code that can be found on the Internet
from hams that developed software a decade or two ago. And while conversion to an alternate
language may appear difficult the Internet is a good source of free tools to do rough conversions. The
online code converter from Telerik [3] is the one chosen by one of the designers of ARDOP for this
purpose. When the code is converted by the online tool, it is quite likely that it's not going to be ready
to compile; the designer had to do a great deal of hand editing of the results to get it to compile and
that is compounded by the number of files that interact in subtle ways. It also uncovers a lot of corner
cases where VB.NET specific functionality has to be removed for a more workable product. This also
provides an opportunity to lay the ground work for the second and third challenges; targeting multiple
platforms and alternative interfaces.

When targeting multiple platforms, it is often best to understand the way each one handles user
specific files such as application configuration files. It is also good to know what options exist for
handling the interface to the sound hardware in the device the application will be running on. In the
past, and this is often still done by application authors, configuration files have been placed in the same
directory as the application executable is. This is fine in a single user environment, but not when
installed on a multiuser system. The proper procedure is to place the configuration files in a folder

102

(also called a subdirectory) in the user's home directory. Global files with basic parameter values can
be installed as well, if desired. Audio device detection can be handled one of two ways; with a custom
library that is used by the software on the alternative platforms instead of the default library, or one
that is available on all target platforms.

Typical Host programs

For initial on-air testing of the ARDOP protocol we needed a fairly simple host program where users
could send beacons, basic keyboard text, and small files with ARDOPs FEC and ARQ modes
exercising various bandwidths and modulation modes. Existing code from a prior project (V4Chat)
was modified to interface to the virtual
ARDOP TNC using a robust TCP IP
interface. Fig 5 shows the basic ARDOP
Chat host that provided setup for the
ARDOP TNC, keyboard interaction,
received data display and file editing and
transmission along with a few
conveniences like ADIF logging, beacon
setup, and basic radio control (PTT and
Frequency).

 Fig 5. Basic ARDOP Chat host program used for initial keyboard testing.

Following initial debugging of the ARDOP Virtual TNC and ARDOP_Chat host programs John
Wiseman GM8BPQ adapted his BPQ32 [4] host program to interface to the ARDOP Win TNC. This
allowed additional functions including radio email and binary file transmission through the WL2K
system using the existing B2 forwarding protocol. The following diagram shows how the BPQ Host
interfaces to the ARDOP TNC along with conventional Packet and Pactor hardware TNCs.

This interface approach (separating the TNC DSP code from the host and interfacing through standard
TCPIP , Serial or Bluetooth interfaces) allows the TNC code to be host application independent similar
to the way a typical hardware TNC is.

103

Fig 6. ARDOP Virtual TNC Interface to the BPQ32 System

Figure 7 shows a basic screen capture of an ARDOP B2F protocol session with the BPQ32 ARDOP
TNC interfaced as described in Fig 6 above.

Fig 7. BPQ32 ARDOP ARQ session showing the interface to

the WL2K Ham radio email system.

104

Project Status

The ARDOP project began Beta testing using both the ARDOP_Chat and BPQ 32 host programs in
July 2015. The ARDOP Protocol spec is complete and the ARDOP virtual TNC is operational on both
the Windows (Win XP- Win 10 using DirectX) and Linux (x86-Debian and ARM-Raspbian systems
using MONO and the ALSA sound library) platforms and on Apple using the popular dual boot
systems. A wide range of data modes covering speed and robustness ranges in excess of 40:1 are
optimized for both HF (baud rate < 200 baud) and VHF/UHF FM (baud rate > 600 baud) are
operational. As the Beta phase completes we will release the open source code along with a detailed
testing and conformance document to allow those adapting or extending the protocol to insure basic
compatibility with prior implementations. We have also initiated an effort to develop small low-cost
hardware to allow wireless interfacing (Wi-Fi and Bluetooth) of small computing platforms (tablets,
smart phones) to HF and VHF/UHF radios that would use the ARDOP protocol.

Credits

The authors wish to thank all those ARDOP Alpha and Beta testers from across the globe that have
contributed to the development and testing of this new amateur protocol. Acknowledgement is also
given to those programmers that wrote public DSP and encoding/decoding routines that were used in
the ARDOP TNC. Specific reference of these is included in the commented source code.

References:

[1] (WINMOR…A Sound Card ARQ Mode for Winlink HF Digital Messaging, Rick Muething,
KN6KB, 27th ARRL and TAPR Digital Communications Conference 2008)

[2] ARDOP Documentation and Code in Yahoo groups:
https://groups.yahoo.com/neo/groups/ardop_development/files
https://groups.yahoo.com/neo/groups/ardop_users/files

[3] Telerik on-line code converter. http://converter.telerik.com

[4] BPQ Host program by John Wiseman GM8BPQ. http://g8bpq.org.uk
https://groups.yahoo.com/neo/groups/BPQ32/info

