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Abstract 
 
We present simulations of conventional quadrature amplitude modulation (QAM) and Feher-QAM to 
estimate the bandwidth improvement for Feher-QAM.  We show more than a 10% improvement 
(reduction) in bandwidth for Feher-QAM over conventional QAM.  We also show the power spectral 
density for Feher-QAM has a much faster convergence than conventional QAM. 
 

Conventional digital modulation techniques are limited by embedded rectangular windowing functions.  
Some more advanced modulation techniques utilize raised cosine windowing functions (filters) to improve 
sidelobes.  Feher modulation uses a half cycle raised cosine waveform to reduce bandwidth and improve 
sidelobe attenuation.  Feher modulation offers the equivalent power spectral density convergence of a 
raised cosine windowing function with twice the width (half the bandwidth).  All symbol transitions in 
Feher modulation are smooth and occur at zero slope points.  The smooth, zero slope transitions help 
improve intersymbol interference, and reduce timing jitter problems. 
 
Key words:  Feher modulation, QAM, Feher-QAM 
 
 

1.  Introduction 
 
We present a short introduction to Feher, half cycle raised cosine, modulation.  Feher modulation consists 
of half cycle raised cosine functions concatenated together to form a smooth function.  For the symbol 
sequence {0, 1} a step change occurs when transitioning from 0 to 1 in conventional modulation.  In Feher 
modulation, the symbol transition occurs over a full symbol time.  The sequence {0, 1} is mapped to a 
positive going half cycle raised cosine waveform, , with gain = +1 in (1.1).  The sequence {1, 0} is 
mapped to a negative going half cycle raised cosine waveform, , with gain = -1 in (1.1).  The sequences 
{0, 0} and {1, 1} are mapped to a zero slope line segment, , as shown by gain = 0 in (1.1).   
 

 
 
The mapping of serial data {0, 1, 1, 1, 0, 0, 1} to Feher modulation is illustrated in Figure 1.1.  The initial 
symbol (condition) is assumed to be 0.  The 0* to 0 transition is mapped to a zero slope line segment 
(where 0* is the assumed initial symbol).  The next symbol transition is 0  1 which is mapped to a positive 
going half cycle raised cosine waveform, .  The 1  1 transition is mapped to a zero slope line segment, 

.  The 1  1, 1  0, 0  0, and 0  1 mappings are also shown in Figure 1.1.  As illustrated in Figure 1.1 

Half Cycle Raised Cosine 
        (basis function) 

Gain = 0Gain = -1 Gain = +1

 

          (1.1) 
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Feher modulation is a smooth function with zero slope points occurring at the serial data symbol transition 
points (dashed vertical gray lines).  Figure 1.1 also shows that each half cycle raised cosine waveform 
(gain = -1, 0, and +1) occurs over one serial data symbol time. 
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Figure 1.1.  Feher Half Cycle Raised Cosine Modulation 

 
 

2.0  Windowing Functions 
 
Equation (2.1) introduces the unit step function.  The unit step function is used to create the rectangular 
windowing function in (2.2).  Equations (2.2) through (2.5) introduce a number of windowing functions. 
When data is sampled over a finite length of time, the resulting function is equivalent to a rectangular 
windowing function times an infinitely long function.  The rectangular windowing function has slow 
(poor), power spectral density convergence as illustrated in Figure 2.1.  To 
improve the convergence of sampled data, a raised cosine windowing function is used to reduce the effects 
of the rectangular windowing function. 
 

For the serial data stream in Figure 1.1, the step changes embed rectangular windowing functions in the 
serial data’s power spectral density [1-5].  From a practical point of view, Feher modulation minimizes 
the slope when transitioning from serial data symbol, n, to the next serial data symbol, n+1.  Full cycle 
raised cosine modulation, and overlapped raised cosine modulation are described in [6-8]. 
 

The half cycle raised cosine windowing function (2.5) has the same power spectral density convergence 
as a raised cosine window with twice the width (2.4).  In section 4, simulations are used to determine the 
bandwidths for conventional quadrature amplitude modulation, and Feher-QAM.  We will show in 
sections 4 and 5 that the half cycle raised cosine windowing function results in more than a 10 % reduction 
in bandwidth for 16 quadrature amplitude modulation.  

Feher Modulation 
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Unit step function,   (2.1) 

 
Rectangular windowing function (width = 2) 
     (2.2) 

 
Raised Cosine windowing function (width = 2) 

     (2.3) 

 
Raised Cosine windowing function (width = 4) 

     (2.4) 

 
Half Cycle Raised Cosine windowing function 

     (2.5) 

 
 

 
Figure 2.1.  Windowing Functions 

Spectrum Analyzer Display

Frequency
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ow

er
S

pe
ct

ra
lD

en
si

ty
(d

B
m

/H
z)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
Rectangular Window

Raised Cosine Raised Cosine (2w)

Half Cycle Raised Cosine



52

3.0  Quadrature Amplitude Modulation (QAM) Background 

      Quadrature amplitude modulation(QAM) 
 

 

 and  values are found in the 
diagrams in Figure 3.1 and Figure 3.2. 
 

fc  = carrier frequency in Hz 
             (3.1) 

Equation (3.1) provides the general definition for quadrature amplitude modulation.  Cosine and sine terms 
are multiplied by I(t) and Q(t) signals respectively.  The term I(t) is in-phase with the cosine carrier and 
Q(t), the quadrature phase term, is 90º (  radians) out of phase with the cosine carrier.  Figure 3.1 presents 
the constellation diagram for 4 level QAM which is equivalent to 4 level phase modulation.  We see the 
points on the constellation diagram all have a radius of 1 with phase angles at ±45º and ±135º (  and  
radians).  The angle sum identity shows 4 level QAM reduces to phase modulation.  This is a special case; 
in general the I and Q terms create both amplitude and phase modulation.  

In
-P

ha
se
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(t)

Quadrature Phase, Q(t)

-1

+1

(r, ) = 41,( )

+1
-1

(r, ) = 3
41,( )

( )(r, ) = -3
41, ( )(r, ) = -

41,

cos( 2  f t + ) = cos( )cos( 2  f t ) - sin( )sin( 2  f t )
c c c

 
Figure 3.1.  4 Level QAM or 4 Level Phase Modulation 

Message = “DSP” = 0x44; 0x53; 0x50 (where 0x0x## indicates a hexadecimal number)      {3.1} 

We present an example message = “DSP” to show how ASCII characters are converted to 16 level 
quadrature amplitude modulation.  The message “DSP” in {3.1}, converted to ASCII code gives 
“D” = 0x44, “S” = 0x53, and “P” = 0x50.  For 16 QAM in Figure 3.2, there are 16 symbols {0x0, 0x1, 
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}.  Each group of 4 bits from the 
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message “DSP” is converted to a (I,Q) vector representation for 16 QAM modulation.  Figure 3.2 shows 
the 4 bit code to 16 QAM look-up table.  For “D”=0x44, the 4 bit groups are 0x4; 0x4, the (I,Q) vector 
for 0x4 is (0.75, 0.25) volts.  Equation (3.2) shows the (I,Q) vector values for the message in {3.1}.  The 
QAM signal, s(t) as shown in (3.1), is calculated from the n-th (I,Q) vector and the cosine and sine carrier 
terms.   
 

Figure 3.3 shows a 16 level QAM modulator block diagram and simulation.  Figure 3.3 clearly shows step 
functions present in 16 QAM.  The embedded step functions (rectangular windowing functions) result in 
a sin(x)/x power spectral density function as shown in Figure 3.3. 
 
 

(I, Q)    = (+0.75, +0.25), (+0.75, +0.25); (+0.25, +0.25), (-0.25, +0.75); (-0.25, +0.25), (+0.75, +0.75)  (n)

Message = “DSP”  = 0x44; 0x53; 0x50

“D” = 0x4;                0x4 “S” = 0x5;                  0x3 “P” = 0x5;                 0x0

 

  (3.2) 
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Figure 3.2.  16 QAM Constellation Diagram 
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4.0  Feher-Quadrature Amplitude Modulation (QAM) 
 
Feher quadrature amplitude modulation (QAM) is similar to the binary example in Figure 1.1.  Serial 
binary data consists of two amplitude values +1 and -1 (or 1 and 0).  16 QAM consists of 4 amplitude 
values for I and 4 amplitude values for Q.  As illustrated in Figure 3.2, the 4 amplitude values are -0.75, 
-0.25, +0.25, and +0.75.  The half cycle raised cosine functions are gain scaled by (4.1) to connect the 
(I,Q) QAM symbols together.  For the half cycle raised cosine waveform, the initial value, DC_Offset(n) 
in (4.2), is the final value from the previous symbol.  HRC(t) in (4.3) generates unit amplitude, half cycle 
raised cosine waveforms.  Feher QAM in (4.4) is a unit half cycle raised cosine, HRC(t) in (4.3), gain scaled 
by (4.1), plus the final value from the previous (I,Q) vector in (4.2). 
 
 
Gain(n) = (I, Q)(n) - (I, Q)(n-1)             (4.1) 

 
 
DC_Offset(n) = (I, Q)(n-1)              (4.2) 
 
 

H (t)RC = 1
2

+ 1cos(2 f )
sym

 (t) =

Periodic Half Cycle Raised Cosine

Where (t) is the sawtooth function
 

                    (4.3) 

 
 
Feher_QAM(t) = HRC(t) • Gain(n) + DC_Offset(n)          (4.4) 

 
 
Figure 4.1 shows a block diagram implementing Feher modulation algorithm for 16 QAM.  Vector 
operations are shown as thick lines.  Scalars are shown by thin lines.  The most complicated part of Feher 
modulation algorithm is the unit half cycle raised cosine generator, HRC(t) in (4.3).  The rest of the 
operations are vector addition and scalar multiplication.  A look-up table (Figure 3.2) converts 4 bit 
numbers to 16 QAM symbols.   
 

Conventional QAM and Feher QAM are compared in Figure 4.2.  The half cycle raised cosine waveforms 
form smooth curves from (I,Q)(n-1) to (I,Q)(n).  The Feher QAM waveforms are smooth functions without 
step changes.  At each conventional QAM symbol transition, Feher QAM has a zero slope.  Each half 
cycle raised cosine requires a full conventional QAM symbol time to change state.  Figure 4.1 shows a 
Feher 16 QAM modulated waveform.  It is a smooth function without any step changes. 
 

Figure 4.3 and Figure 4.4 compare simulations of conventional 16 QAM to Feher 16 QAM.  Figure 4.4 
shows an expanded scale highlighting the main lobes.  Conventional QAM has a sin(x)/x power spectral 
density function with a slow convergence.  Feher QAM has a narrower main lobe with a much faster 
convergence (cosine-like windowing function).  Section 5 compares bandwidth and convergence for 
conventional QAM and Feher-QAM. 
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Figure 4.1.  Feher-QAM Block Diagram. 
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Figure 4.2.  Simulated QAM and Feher QAM Waveforms 
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Figure 4.3.  Simulated 16 QAM and Feher-QAM Power Spectral Density 
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Figure 4.4.  QAM and Feher-QAM 90% and 99% Power Bandwidth Points 
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5.0  Bandwidth Comparison 
 
We simulated a 1000 Hz carrier frequency, 100 symbol/second conventional QAM modulator and Feher-
QAM modulator using the simulation tool in [9].  Table 5.1 only compares power bandwidth points for 
the main lobes.  As shown in Figure 4.4 the sidelobes for conventional QAM are much larger than Feher-
QAM.  Including the first sidelobes in the power bandwidth calculation would show even a larger 
improvement for Feher-QAM.  Table 5.1 shows better than a 10 % improvement in the 90 % power 
bandwidth points for Feher-QAM.  Table  5.2 shows a 30 dB improvement in power spectral density 
convergence at  ±2fsym (2 times the symbol frequency).  Tables 5.1 and 5.2, and Figures 4.3 and 4.4 show 
improved (reduced) bandwidth and much better convergence for Feher-QAM compared to conventional 
QAM. 
 
 

Table 5.1.  Bandwidth Points in terms of Symbol Frequency (100 Hz) 

Bandwidth Points Conventional 
QAM 

Feher-QAM Improvement 

90 % Power Points ± 58 Hz or ± 58 % ± 50 Hz or ± 50 % 13.8 % 
99 % Power Points ± 80 Hz or ± 80 % ± 75 Hz or ± 75 % 6.3 % 

 
Table 5.2.  Convergence in terms of Symbol Frequency (fsym) 

Symbol 
Frequency 

Conventional 
QAM 

Feher -QAM Improvement 

±2fsym - 7 dBm/Hz - 37 dBm/Hz 30 dB 
±4fsym -15 dBm/Hz -56 dBm/Hz 41 dB 

 
 
6.  Conclusion 
 
We show that Feher-QAM has better than a 10% improvement in bandwidth and 30 dB improvement in 
power spectral density at ±2fsym (2 times the symbol frequency).  Feher modulation simply adds an 
additional DSP stage prior to the final modulation stage as shown in Figure 4.1.  Feher modulation is a 
general technique and can easily be applied to other digital modulation techniques. 
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