
 ALGORAM

An Operating-System-Independent
Web Front Panel for Radio

Transceivers
● Bruce Perens K6BP

● bruce@perens.com

● +1 510-4PERENS (+1 510-473-7367)

Demo

● Connect to WiFi or use your cellular connection
and run Chrome, Firefox, or Opera.

● server1.perens.com runs audio echo server in
my home in Berkeley, on Comcast Business
cable Internet service.

● server1.perens.com/canvas.html runs the
spectrum display.

● Blog.algoram.com has the authentication demo.

● iOS won't do the audio echo.

What Is It?
● Algoram has produced a web front panel that

will run on all popular operating systems except
Apple's iOS.

● This is not ported from one system to another.
The exact same software runs on Windows,
MacOS, Android, Linux, BSD, Kindle Fire, and
other systems.

● It uses two-way audio through the web browser
to provide a microphone and speaker for the
radio.

● It runs well on smartphones and tablets, as well
as laptops and desktops.

● No installation is necessary.

The Server

● The server to enable this is written in C++, and
runs on small processors without MMUs, as
long as the they can support TCP and a
network interface.

● On Algoram Katena, there is a WiFi interface on
the radio which you can use with a smartphone.

● There's also an Ethernet connector.

● The same front panel works locally, or globally
on the Internet.

Authentication

● There is authentication software that can
authenticate a Stranger on the Internet as a
licensed radio amateur, solving the “don't touch
my knobs” problem for the Internet.

● Authentication through an approved user list
could be implemented.

Dexterity and Handicaps

● The Smartphone interface is usable by fumble-
thumbed people with relatively low dexterity.

● Keyboard inputs are recognized.

● Visually impaired users can use the keyboard
for input exclusively rather than the
touchscreen.

● Motor-impaired users can use any device that
emulates USB key presses.

● We could implement voice output for blind
users.

What are the Breakthroughs?
● The key to this development has been

emerging HTML5 APIs:

● We can use the microphone using the
getUserMedia() API.

● We can do sophisticated audio processing
using the Web Audio API.

● We can do essentially any graphics, 2D or 3D
using the HTML5 Canvas.

● We communicate with Websocket.

● Web browsers support real-time compilation of
Javascript, so it's fast.

Platform

● The current platform is the Algoram Katena
radio. The program is working as a WiFi host
which communicates with smartphones, etc.

● The software would work on other platforms
that combine a radio, a server computer, and a
net connection, such as Northwest Digital or
FlexRadio.

Revenge of the Clones

● Wouldn't it be nice if we all
ran the same operating
systems, instead of Windows,
Mac, Android, iOS, Linux,
BSD?

● Well, lets look at other
situations where everything's
the same.

● This is Jango Fett, the clone
trooper. Would a clone army
be a good idea from a
strategic perspective?

Clones Today

Commercial Bananas are Clones
● Commercial Bananas are bred to be seedless

and are propagated by cuttings. The are true
clones.

● The Gros Michael cultivar of my parents time was
sweeter than the Cavendish banana we eat
today.

● But Gros Michael fell victim to Panama Disease,
a fungal infection which spread worldwide.

● The “Tropical Race 4” version of Panama
Disease is almost certain to eliminate the
Cavendish banana eventually.

● Clones share the same disease immunity and all
of them can fall victim to the same disease.

Tasmanian Devils are Genetically
Identical

Tasmanian Devil Disease

● Tasmanian Devils (Tassies) are inbred and went
through a genetic bottleneck, so that they are
all genetically identical and share the same
immune complex.

● They have contagious cancer which is driving
them to extinction.

● Humans don't have contagious cancer because
they are not genetically identical.

● If you have any cancerous twins, don't bite
them! Tassies do that and spread the cancer
between themselves.

Computers

● 15 years a go, a big international express
shipping company had standardized on
Microsoft Windows across its entire operation.

● Then, they got the Red Flag virus.

● They were reduced to phones and fax
machines across their entire operation for a day
or more, until they would bring all of the
Windows systems down and rewrite their
software.

So

● Clone armies are a really stupid idea. When
Jango and Boba Fett catch a flu, the whole
army catches the flu. Sorry George Lucas.

● Similarly, if we all use the same operating
system, all of our computers can catch the
same virus at the same time.

● Ham Radio is the public service network of last
resort. It would be bad for us all to run the same
software. It's bad for the world to do that, too.

Hetrogenous Networks

● Hetrogenous Networks have different software
running on their nodes, instead of a
monoculture.

● This is important for security.

● But there is a cost.

● They don't run the same applications.

● We have to “port” applications to each platform.

Porting is Expensive

● There is a combinatorial problem in supporting
all of these different operating systems.

● Small companies like Algoram can't afford the
programmers to support all of those different
operating systems. Right now we're just two
guys who work part time.

● Programmers have tried different strategies to
reduce the cost of porting.

Porting Strategies

● We can use the same programming language
on different platforms. For example, C and C++
run on almost everything.

● But even then, platforms have different
graphical user interfaces, etc., and thus
applications for each operating system have to
be programmed differently.

● Portability Layers like wxWidgets and the Java
API can be used to hide the differences
between platforms.

Software as a Service

● Run everything on a web browser, with
someone else taking over the effort of
maintaining the software (for a fee, an
advertising opportunity, or the opportunity to
know your data).

● This tends to fail in a disaster, and spread the
impact of the disaster beyond its boundaries.
For example Hurricane Sandy.

The Web Browser as GUI

● Modern web browsers, meaning Google
Chrome, Firefox, and Opera, provide all of the
APIs necessary to be radio front panel.

● We have three different browsers that run the
necessary APIs. They are different internally,
and so they probably won't all catch the same
virus at the same time.

● Safari and Internet Explorer will eventually
catch up, giving us five browsers. Maybe others
eventually.

Suported Platforms

● At present, we can run the exact same software
on one of those web browsers on Windows,
MacOS, Android, Chromebooks and
ChromeOS, Linux, BSD, Kindle Fire, and any
other platform that runs those browsers in their
full form.

● That's not iOS. Not even iOS 9.

Why not iOS?

● Apple requires that all browsers on iOS run
Apple's version of the Webkit rendering engine,
instead of their own.

● Apple has not kept up with emerging web APIs.
No complete implementation of getUserMedia()
or the Web Audio API.

● Because their web store is so locked down, you
can't fix the browsers. Your only choice is to
write a specialized app for their platform.

● That's why you pay more for Apple hardware.

● But there is one advantage to Apple hardware:

Adantage of Apple Hardware

● The iPhone and iPad
charging cable
doesn't fall out.

● This justifies the up
to 3X price increase
over similar Android
hardware, the lock-
down, and the
obsolete software.

● However, Macbook
has already switched
to USB C...

Original Web Browser Functionality

<head>

 <title “Hello World!”>

</head>

<body>

 <p>

 Hello, World!

 </p>

</body>

Assumptions

● Amateurs always plan for their systems to
survive the apocalypse.

● Thus, no software-as-a-service in the
conventional model.

● In a disaster, it's the services that fail.

Local Server

● The server runs in your radio, and stays up
during a disaster.

● You aren't dependent on anything outside of the
radio to run your front panel. No network
necessary.

● Although you may not have access to the
Internet, you probably do have access to a
radio network, even if it's an ad-hoc one.

Web Apps

● A new API, supported on Android and iOS,
allows web pages to become full-screen apps.

● You can install them as apps, or just save them
from the browser. But they are really just web
pages.

● They get rid of the URL bar and all of the other
web server interface elements.

● They look like any other app.

Start-Up (1)
● Connect to radio via WiFi or Bluetooth.

● Radio runs DHCP server.

● DHCP sends route to its local network and
possibly Hamnet, without a default route for the
entire Internet. Phone keeps its old Internet
route working.

● Open Radio URL in browser (or just push app
button to do this).

● Radio runs DNS to send you its local network
address.

● Connect to radio web server.

Start Up (2)

● Radio Web Server sends HTML file.

● HTML file causes browser to request Javascript
and CSS file.

● Radio sends those.

● Javascript runs.

● A two-way, stream-oriented connection to the
radio is made from Javascript using
Websockets.

Start-Up (3)

● Javascript gets Microphone (and possbly
camera) via getUserMedia()).

● Browser asks permission to use microphone, if
that isn't saved.

● Application starts.

● All data communicated via one Websockets
channel.

Local or Remote
● The same protocol works on a local network or

remotely over the Internet.

● We solve the “Don't Touch My Buttons”
problem:

● For local clients, the WiFi network (which is Part
15, not Amateur Radio) is password-protected
and encrypted (very easy for user).

● There is authentication for remote Internet
clients via HTTPS and x.509 Cryptographic
Certificates (this is not going over Amateur
Radio). Certificate management adds steps the
user has to go through.

Communications Protocol

● My original assumption was that we'd use
WebRTC.

● However, there is no small embedded library
that supports WebRTC on the server. The
smallest implementations are based on the
Chrome browser. For example Node.js, a
system for running Javascript on servers, is too
big for our hardware.

Websockets

● So Websockets was chosen as the
communications protocol.

● Websockets is a stream-oriented protocol on
the HTTP or HTTPS socket. It gives you the
session-oriented operation that we have
previously had to simulate on the web using
cookies. It knows how to serialize and de-
serialize Javascript strings and arrays.

● It traverses firewalls the way any web browser
connection does. If web connections get
through, this will too.

JSON
● JSON is JavaScript Object Notation.

● It is a way of putting structured data into a string
format (serialization) that is easy to parse by
computers and human readable.

● It handles strings, numerics, booleans, data
structures and arrays of those things, including
hierarchical ones.

● Javascript in the browser has native functions
to serialize and parse JSON.

● Lots of software, in many languages, is
available to parse and produce JSON.

● It works well for both intercommunication and a
file format.

Websockets Data

● Websockets knows how to send and receive
strings, arrays, and “blobs”. Strings and arrays
are easy to handle in Javascript, blobs are
meant for raw data not in a Javascript format,
so they need extra effort.

● JSON data is converted to and from strings for
transmission. All sent and received strings are
encoded JSON.

● Audio and panadapter spectrum display data
are arrays.

JSON Use

● All small data is communicated using JSON,
this is mainly commands to the radio and status
back.

We send: { “command”: “transmit”; };

We receive: { “command”: “transmit”, “frequency”:
144.52, “mode”: “FM”, “deviation”: 15000, “PL”:
[100, null] }

● Commands and status look the same.

● This is really easy to write in Javascript code to
run on the browser, and not much worse to
write in C++ on the server.

Bulk Data

● Audio and the “panadapter” spectrum display
are bulk data, are sent as Javascript arrays.

● The first number in the array says what the type
of the data is.

● Currently that is only audio and spectrum data.

● Everything else is sent separately as JSON.

Audio

● The current audio implementation just sends
16-bit samples at 8192 samples per second,
without compression.

● This works perfectly on the local network, no
compression necessary.

● It's sub-optimal on the Internet, but mostly
works fine.

Codec2 In The Browser

● A program called emscripten compiles C to
Javascript.

● It's a Javascript back-end to the LLVM compiler.

● The just-in-time compiler for Javascript in your
browser has enough performance to run C code
acceptably.

● So, it's probably possible to run Codec2 in the
browser, portably.

● Long-term, this is what WebRTC is meant to do,
and we will switch to it when we have a good
embedded library for it.

Web Audio API

● The web audio API provides a graph-oriented
programming interface for audio processing
with many interesting processing nodes.

● There is a compressor/limiter node.

● There is an FFT node! Yes, FFT is an emerging
standard API implemented in browsers.

● Coupling Javascript to web audio processing is
awkward. Stream to array and back at inputs
and outputs, separate processing stream each
time you go back and forth to Javascript.

● Ultimately we're going to WebRTC, which will
run its own codec for us.

Sideloading

● For Kindle Fire, it was necessary to use
sideloading to install Chrome instead of using
the Silk browser. It was not, however,
necessary to root the device.

● Rooting means defeating the security of the
device.

Authentication

● Two years ago, Heikii Halikaanen presented
how to use the Logbook of the World
cryptographic certificate to validate Strangers
on the Internet as licensed Radio Amateurs.

● The Trusted QSL program can be used to
extract an x.509 cryptographic certificate that
your browser can use for a secure,
authenticated connection.

● The certificate includes your callsign.

● Instructions on blog.algoram.com .

Digital Certificate

● ARRL has already authenticated many
thousands of Radio Amateurs. Anyone on LotW
can use this.

● It's really cool that they do the work for us.

● We would need a table to correlate callsigns to
nations and license classes, to tell what people
really are licensed to operate.

● You can also password authenticate individuals.

 ALGORAM

