OpenWebRX: SDR Web Application for the Masses

Andras Retzler, HA7ILM

Department of Broadband Infocommunications and Electromagnetic Theory,
Budapest University of Technology and Economics, Hungary

randras(@sdr.hu

Abstract—Software Defined Radio technology is
getting more and more popular among amateur
radio operators and hobbyists, as different
universal SDR hardware devices have become
available recently. OpenWebRX is a software made
for those who want to set up remote SDR receivers
accessible from the web. It has been developed with
open-source codebase, multi-user access and easy
setup in mind, to be an alternative to other similar
projects (WebSDR, ShinySDR, WebRadio, etc.) It
supports cheap RTL2832U based tuners. Basically
OpenWebRX is an on-line communications receiver
for analog transmissions (AM/FM/SSB/CW), with a
web Ul on which real-time waterfall display is
available. Users can select a channel within the
bandwidth of the sampled signal acquired from the
SDR hardware. The selected channel is
demodulated on the server and the resulting audio
is streamed to the browser of the user, where it is
played back. Users can set receiver parameters
(channel frequency, modulation mode, filter
bandwidth) independently. The digital signal
processing functions have been placed in a separate
library, libcsdr, which can also be considered useful
as a standalone package. It performs the digital
downconversion, filtering and demodulation tasks
on the I/Q data.

Keywords—SDR,
HTMLS5

RTL-SDR, open-source,

I. INTRODUCTION

The speed of digital computing is increasing
continuously. In addition, in the last years
reasonably fast A/D and D/A converters have
become available. It has become feasible to
implement most of the signal processing digitally
in radio systems.

122

Nowadays Software Defined Radio is widely
used in commercial systems from satellite
communication to mobile telephony, but it mostly
does its task hidden in the background, replacing
the conventional analog communications
equipment. These embedded SDRs are tailored for
a specific need (for example running a 4G base
station), producing better results than their analog
competitors and solving advanced problems at a
lower price.

However, there is also a need for universal
SDR hardware for prototyping, measurements and
for use in real-world projects. While devices like
the USRP, HackRF, BladeRF have come to the
market to support professional and academic users,
a lot of amateurs have also started to experiment
with SDR technology, building cheap receivers for
specific bands. When the RTL-SDR project [1] has
been released in 2012, even more people got in
connection with SDR directly. A mass-produced
DVB-T receiver USB dongle with an RTL2832U
chip is a great entry-level device that can be
acquired for $15, and with the help of the RTL-
SDR project, it is possible to use it as a general
purpose SDR. It tunes between 24 MHz and 1700
MHz, can be used as a receiver for a variety of
wireless equipment, from two-way radios to
wireless temperature sensors, and it works on
multiple amateur radio bands as well. There is a
vast number of free software available for
decoding different signals with it. Although its
professional competitors provide better
performance, it is still an ideal choice for the
experimenters.

RTL-SDR is also a great educational tool that
can help to get more young people into amateur
radio. For those, who already have the required
background in IT, playing with the cheap DVB-T
stick is a great chance to dive into the radio waves.
I even had a friend under the age of 15 who
managed to receive the signals of an amateur radio
satellite with RTL-SDR on his own.

Two years ago [released an open-source
project, SDRLab [2], which implements an RTL-
SDR interface for LabVIEW along with a simple
WFM demodulator example, and since then, I
received e-mails from a few university students
from different countries, asking about it. It turned
out that at some universities, RTL-SDR is used as
an educational tool to teach digital signal
processing.

So why not bring SDR closer to even more
people? The motivation behind OpenWebRX was
to create a remote SDR receiver that is available
from the Internet, so that amateur radio operators
can connect to the server with a web browser, click
on an interesting signal on the waterfall display,
and listen to the demodulated audio stream,
without the need of purchasing any dedicated
hardware to experiment with SDR (as shown on
Figure 1).

Fig. 1. A high level block diagram of OpenWebRX

II. ALTERNATIVES AND DESIGN CONSIDERATIONS

The idea is not new: there are several software
available for this purpose. The best known is
WebSDR, by Pieter-Tjerk de Boer, PA3FWM.
WebSDR has been developed since 2007, and now
has numerous great features, like the auto-notch
filter and the HTMLS5 mode which also works on
mobile devices. The drawback is the availability of

the software: as stated in the WebSDR FAQ, you
can only get it directly from the author, so it is not
distributed to anyone by means of free download,
and the source code is not available at all, so even
if you have the binaries, you cannot make your
own modifications. Another good alternative is
ShinySDR by Kevin Reid, AG6YO, which is
open-source under the GPL license, but currently
more suitable for use by only a single person at the
same time (Kevin noted that multi-user support
will be available in the future). One more notable
project is WebRadio by Mike Stirling, which is not
actively developed at the moment.

When I started working on OpenWebRX, only
WebSDR existed as an alternative. I wanted to
create a software package that implements an SDR
receiver that satisfies the following requirements:

* it has a web UI (shown on Figure 2),
* it works with RTL-SDR dongles,

* multiple people can use it at the same time,
and they can tune to different frequencies
independent to each other, within the
receiver bandwidth,

* the source code is available under an open-
source license, as I consider reviewing,
modifying and improving ham radio gear
and software as a good practice.

Fig. 2. A screenshot of the OpenWebRX web Ul

123

1. SETTING UP AN OPENWEBRX SERVER

To set up an OpenWebRX server at home, you
will need a computer running Linux, and an RTL-
SDR dongle. OpenWebRX has been tested on
Debian/Ubuntu based systems, but it should work
on other Linux distributions as well. If the
dependencies have already been installed (rt/-sdr,
libffiw3-dev, git, python 2.7, gcc, bash), then the
first step to do is to get the git repositories:

git clone \
https://github.com/simonyiszk/openwebrx.git

git clone \
https://github.com/simonyiszk/csdr.git

Next, libcsdr should be compiled:

cd csdr
make \
sudo make install

Now OpenWebRX can be started. If it is ran with
the default settings, it will set the RTL-SDR to the
2-meter band, and begin acquiring samples.

cd ../openwebrx

. /openwebrx.py

The receiver can be opened in the web browser by
typing the following URL:

http://localhost:8073/

As OpenWebRX uses some recent HTMLS
features that are not present in older browser
versions, it requires the latest Google Chrome or
Mozilla Firefox. It should also work on Chrome
for Android, although it is not optimized for
mobile devices yet.

By editing the config webrx.py file, receiver
settings can be configured (center frequency,
sampling rate, gain) and also the details shown on
the web UI (callsign, location, antenna, etc.) can
be customized.

IV. USING OPENWEBRX

The user interface of OpenWebRX is similar to
other SDR software: it has the appropriate buttons
for changing modulation, receiver frequency can
be set by clicking on a signal shown on the
waterfall display. An additional feature is the
availability of the whole history of the waterfall

124

display: one can go back in time with the help of
the scrollbar on the right edge of the window. The
filter bandwidth can be changed by dragging the
ends of the yellow filter shape shown above the
frequency scale (see Figure 3). Additionally, to
achieve the same effect as turning the passband
shift (PBS) or the beat frequency oscillator (BFO)
knob on a real radio, the filter shape or the VFO
tick should be dragged with the mouse, while
holding the shift key down.

Fig. 3. Changing the filter bandwidth

V. PERFORMANCE NOTES

One of the greatest challenges in today's SDR
receivers is the processing of the high amount of
acquired data in real time. Even RTL-SDR is
capable of bringing 2.4 Msps of 8-bit I/Q data into
the computer, which means 4.8 megabytes of raw
data to process every second. It is not a problem if
you want to downconvert and demodulate a signal
for a single user, but otherwise the CPU time
required to process a block of data gets multiplied
by the number of users. If too many clients are
connected to an OpenWebRX server, and the CPU
cannot handle the processing tasks for all of them,
they will get lagging audio. Therefore it is
important to optimize the settings to find the
compromise between the high receiver bandwidth
and the high number of users. There are several
settings you can tune in config webrx.py:

* samp_rate: The sampling rate directly
affects the CPU usage per client. The lower
it is, the more clients can be served
simultaneously. For r#/-sdr, some valid
values are 250000, 1024000, 2048000,
2400000.

* fft size: The waterfall display is calculated
only once for all clients, but decreasing its
resolution can still improve performance

(and results in lower network usage as
well).

* max_clients: It is important to set this
value to the safe maximum that will not
result in lags.

You can stress-test OpenWebRX by opening
your URL in a lot of tabs simultaneously,
preferably on another computer. Note that doing
this requires sufficient CPU performance at the
client as well. On the server, you can check CPU
usage with the rop command.

You do not necessarily need a desktop PC to act
as a server: you can also use one of the popular
single-board computers (SBC) based on ARM
processors. These cheap, small boards have low
power consumption. It was reported by several
users that the Raspberry Pi 2 is capable of running
OpenWebRX, while the original, single-core
Raspberry Pi is not sufficient. My tests on the
Odroid-C1 board showed that it can serve at least
10 clients when the sampling rate is 240 ksps, so it
would be all right for sound-card based SDRs as
well. The audio started to lag when the number of
clients exceeded 15.

On the other hand, running OpenWebRX on a
quad-core Intel i7 CPU can serve 10 clients
without problem at the RTL-SDR maximum
sampling rate, 2.4 Msps, which is equivalent to
processing 48 megabytes of data every second.
This is not a bad result, regarding that we are
talking about a general purpose processor. The
CPU-critical process is the digital downconversion
(DDC), which involves frequency translation and
downsampling. Other DSP operations (like the
actual demodulation and the AGC) work on a
relatively low sample rate signal, so they do not
take much CPU time.

VI. SYSTEM OVERVIEW

In the following part, the components of
OpenWebRX are explained. The two main parts
are the server application and the front-end

running on the client computer (shown on Figure
4).

The server has been implemented in python, a
very flexible scripting language, which has
definitely helped to cut down the time required for
development. Along with running the web service,
the server spawns several processes which
communicate via OS pipes and TCP sockets with
each other and the server core.

Fig. 4. A more detailed block diagram of the
system

One of these processes is the well-known r#/_sdr
command-line tool, which acquires the samples
from the RTL-SDR device. In fact, it can be
substituted with any other command that can emit
I/Q samples to the standard output, so adding
support for other SDR hardware should be easy,
one just needs to change the command specified in
config_webrx.py.

The component used for distributing I/Q data
between processes is rtl_mus.py, which stands for
RTL Multi-User Server. I released this previously
as a separate open-source tool. It acts as a TCP
server to stream raw [/Q data to multiple clients.
(The version packaged with OpenWebRX has the

125

raw [/Q data port restricted to local connections
only, for use by other server components.)

Every time a new client opens the webpage of
the receiver, the browser initiates a WebSocket
connection, which can be used for efficient two-
way communication between the web server and
the client (unlike traditional HTTP requests).

On the server side my own WebSocket
implementation is used, which resides in rxws.py.
When the WebSocket connection is established,
the server spawns a set of new csdr processes as a
signal processing chain, which takes its input from
rtl_mus.py, and outputs the demodulated audio.
The audio is then sent through the WebSocket by
the server core, along with the spectrum data for
the waterfall diagram. The spectrum data is
emitted by the spectrum thread, which is common
for all clients and thus has only one instance.

The front-end application running in the
browser has been implemented in HTMLS and
JavaScript: openwebrx.js manages the Ul and the
WebSocket, draws the waterfall diagram, and
outputs the audio to the sound card using the Web
Audio API. But before the audio can be output,
some additional signal processing steps should be
taken at the client side, which are performed by
sdryjs.

VII. LIBCSDR

The DSP functions behind OpenWebRX have
been implemented as a standalone library called
libcsdr. There are already existing software
packages for this: GNU Radio is the most notable,
which is used by many SDR software for Linux,
e.g. gqrx, ShinySDR. One of the reasons why I
chose to implement my own lightweight solution
is that compiling the latest version of GNU Radio
from source takes a lot of time, and it is sometimes
difficult to do. /ibcsdr contains only the required
functions for AM/FM/SSB/CW demodulation, and
should compile in a couple of seconds, even on
SBCs.

I optimized the code for the auto-vectorization
feature of the GNU C Compiler, so some DSP
functions can make use of the SIMD instructions

126

in the CPU, although much more speedup could be
achieved by hand written assembly code.

VIII. CSDR, A COMMAND-LINE TOOL FOR ANALOG
DEMODULATION

Another feature of the DSP library is the csdr
command-line tool, which can be used to build
simple signal processing flow graphs with one-line
Linux commands. This is the wrapper around
libcsdr that OpenWebRX uses.

With csdlr, prototyping a headless ham receiver on
an ARM-based SBC might be quite
straightforward. = Example = commands for
demodulating NFM/AM/SSB can be found on the
csdr GitHub page [3]. For the sake of simplicity I
rather present a one-liner for demodulating a
WEFM broadcast at 100.2 MHz:

rtl_sdr -s 240000 -f 100200000 -g 20 - | \

csdr convert_u8_f | \

csdr fmdemod_quadri_cf | \

csdr fractional_decimator_ff 5 | \

csdr deemphasis_wfm_ff 48000 50e-6 | \

csdr convert_f_il6 | \

mplayer -cache 1024 -quiet -rawaudio \
samplesize=2:channels=1:rate=48000 \

-demuxer rawaudio -

In this example, to demonstrate the headless
functionality, the raw 1/Q data is taken from the
output of the 7t/ sdr tool, and at the end the
demodulated audio is fed into mplayer, to play it
on the sound card without the need of
OpenWebRX.

We perform the following processing steps in
separate processes:

* rtl_sdr -s 240000 -f 100200000 -g 20 -

RTL-SDR outputs I/Q samples with a
sampling rate of 240 ksps.

®* csdr convert_u8_f

First we convert the 8-bit unsigned
samples to floating point.

* csdr fmdemod_quadri_cf

We run a quadricorrelator FM
demodulator, which turns our complex
input signal into a real output signal.

®* csdr fractional_decimator_ff 5

We decimate the signal by a factor of 5,
while also running a filter on it to suppress
the possibly overlapping high frequency
components. We get a 48000 sps signal at
the output, which matches the sampling
rate of our sound card.

®* csdr deemphasis_wfm_ff 48000 50e-6

We apply a de-emphasis filter with a time
constant of 50 ps.

* csdr convert_f_ilé6

We convert the floating point real samples
to 16-bit signed integers to match the
format required by the sound card.

e mplayer -cache 1024 -quiet -rawaudio (...)

We output the samples to the sound card.

As the DSP functional blocks run in separate
processes, the flow graph can take advantage of
multiple CPU cores, if available. Scheduling is
handled by the operating system. I was skeptic for
the first time I have tried this, as I know the
importance of scheduling in a dataflow system.
While experimenting with OpenWebRX and csdr
together, it turned out that this solution does quite
good job even if about 50 processes are started
when multiple users are present. In addition to
multi-core processing, this implementation makes
the flow graphs of OpenWebRX easily modifiable,
as they are defined as a few lines in
plugins/csdr/plugin.py, and also keeps [libcsdr
code simple.

IX. EXPERIMENTS WITH CLIENT-SIDE DSP

The first release of OpenWebRX server
required about 2 Mbit/s uplink network bandwidth
per client, because I sent the 16-bit 44100 Hz raw
sample stream through the WebSocket. In order to
make OpenWebRX suitable for hams who want to
share their receiver from their home Internet
connection with a low upload speed, I added two
processing steps before sending the data over the
network connection:

* | decreased the sampling rate to 11025
Hz, which is still enough for NFM and
SSB transmissions.

« I applied IMA ADPCM compression to
the audio.

As a result, the required uplink bandwidth now is
about 200 kbit/s with the default settings, of which
about 70 kbit/s is the audio, and 130 kbit/s is the
spectrum data.

In order to restore the original signal at the
client side, I had to implement the reverse
operations in JavaScript.

JavaScript has developed much in the last few
years. It was traditionally an interpreted language,
which resulted in with very poor execution speed,
but with the introduction of JIT compilers, namely
TraceMonkey in Mozilla Firefox and the V8
Engine in Google Chrome, JavaScript is now
feasible to build complex applications on.

Some of the new, and still not widely known
achievements on the scene of JavaScript are the
Emscripten compiler and asm.js. The Mozilla
Foundation has designed asm.js to be a subset of
JavaScript that JIT compilers can easily optimize
for, so performance is typically 50-67% compared
to the speed of the native version of the same code
[4]. Emscripten is an LLVM-based, source-to-
source compiler to translate C/C++ applications
into the asm.js subset of JavaScript. For example,
companies use it to port games to the web, by
compiling the original C++ code of the game (that
was linked against OpenGL) into JavaScript code
that uses WebGL, so the game can be played
directly in the browser.

Instead of porting some algorithms from
libesdr from C to JavaScript manually, I decided to
compile the entire /ibcsdr package to JavaScript
with Emscripten. The resulting JavaScript library
has been called sdrjs, and contains all the
functions that /ibcsdr has. However, there are
some drawbacks. First, a lot of additional wrapper
code had to be written to actually use the compiled
functions. At this point only functions that are
essential to OpenWebRX (like the IMA ADPCM
codec and the resampler) have wrappers yet.

127

It is important to note that here I do only some
post-processing on a signal with relatively low
sample rate (<50 ksps), so the 50% performance
difference between JavaScript and the native code
is not a problem. However, if someone would want
to write a standalone SDR application running in
the browser, the speed of the DDC operation and
the FFT calculation would be limited compared to
a native implementation, and also SDR hardware
access is complicated from the browser (although
Google's Radio Receiver application for Google
Chrome, which has entirely been implemented in
JavaScript, works in a similar way).

Back to the compression, it is also worth to
mention that the spectrum data is compressed, too.
As it 1s a one-dimensional vector of dB values, it
was not feasible to use an image compression
algorithm like JPEG. I've had the idea to test
whether ADPCM works on it, as the spectrum data
is just like any other real-valued signal, and not
that different from an array of audio samples.
Surprisingly, I had good results, so I kept using it.

X. REAL-WORLD USES OF OPENWEBRX

OpenWebRX is currently used by only a few
stations.

Richard van der Riet, PA3GWH and Bart
Weerstand, PASHEA have been running their
servers since February. Richard's server is
monitoring the 30 meter band, while Bart's is
currently working on 2 meters.

With the help of Levente Dudas, HA7WEN I
had the chance to do some testing on one of the
machines of HASMRC Radio Club in Budapest,
with a receiver connected to a Yagi antenna array
automatically pointed to the JAS-2 amateur
satellite during its pass.

Antal Vincze, HG4FC was the first to test the
OpenWebRX server in production environment at
HASKAW club station in Nadap, Hungary.

John Seamons, ZL/KF6VO has adapted
OpenWebRX for use with his direct sampling HF
receiver.

128

Alex Trushkin, 4Z5LV has made a version of
OpenWebRX that is compatible with AFEDRI
SDR.

A few days before submitting the paper I have
got the news that the first OpenWebRX server on
HAMNET has become available, by Hans Reiser,
DLY9RDZ, and there is one more to be set up soon.

XI. CONCLUSION AND FUTURE PLANS

Today's technology allows us to implement
complex applications like an SDR receiver as a
web service. A multi-user SDR receiver requires
much more CPU performance than a single-user
application, still we can find a compromise to let
the application run on single board ARM
computers.

As young people of today have born into a
world with computers and mobile phones, I hope
that web receivers will make some of them
interested in the great hobby of amateur radio.

If you are further interested in the OpenWebRX
project, you can find more information at the
following website:

http://openwebrx.org/

On this page, my Bachelor's thesis that I have
written on this topic is also available for
download. It contains more details about the
implementation of both the web service and the
signal processing. I hope it will help those who
want to write the code for their own ham radio
SDR receiver.

The development has not stopped after
submitting my thesis. The website for listing the
receivers is expected to be ready soon. Users have
requested many improvements, for example a
squelch, and support for tablets, so there is a lot of
things to do. The DDC could be much more
optimized in order to be able to serve more clients
from the same host, and using GPU hardware
acceleration is also under consideration.

XII. ACKNOWLEDGEMENTS

I would like to thank to everybody who helped
me with this project, and especially my friends
Janos Selmeczi, PhD (HASFT) and Péter Horvath,
PhD (HASCQA) for their continuous help and
support.

(1]

(2]

(3]

(4]

REFERENCES

OSMOCOM (2015. 07. 15.), rtl-sdr.
Available:
http://sdr.osmocom.org/trac/wiki/rtl-sdr

Andras Retzler (2015. 07. 15.), SDRLab: an
RTL-SDR interface to LabVIEW for

educational purposes. Available:
http://haSkfu.sch.bme.hu/sdrlab

Andrés Retzler (2015. 08. 16.), csdr.

Available: https://github.com/simonyiszk/csdr
Alon Zakai (2015. 08. 16.), Emscripten &
Asm.js: C++'s Role in the Modern Web (slide
26). Available:
https://kripken.github.io/mloc_emscripten_tal
k/cppcon.html#/26

129

