
Ham Radio: The Best 1,000 Hobbies you can Undertake

Tom McDermott, N5EG September 16, 2017 ARRL / TAPR DCC – St. Louis, MO.

Outline

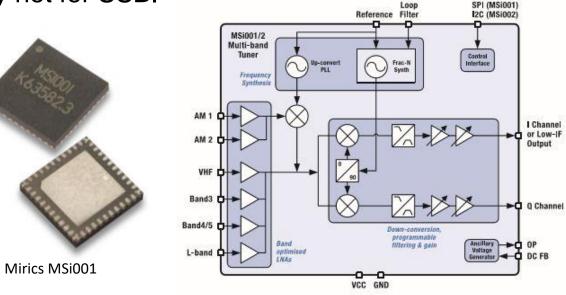
- What is Ham Radio?
 - Can anyone really answer that question?
 - Why do you want to be a ham?
- Life Long Learning (and Technology)
 - What technologies do we use in Ham Radio?
 - Silicon, Firmware, Software, Maker, SDR, Internet, Cloud
 - Where are (some of them) headed?
 - How will it impact you? Our hobby?
- Ham Radio is a big playground.
 - Get your hands dirty

What is Ham Radio?

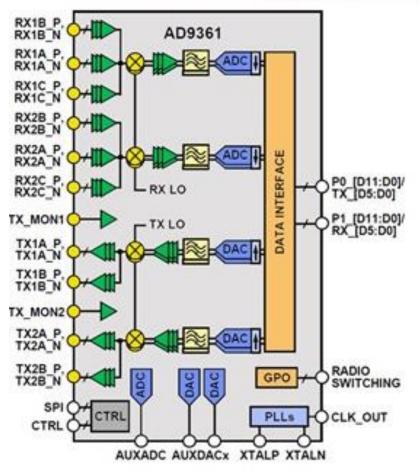
- Depends on your perspective.
 - Public Service.
 - Field Day, Contesting, DXing.
 - CW, SSB, Rag Chewing.
 - Antique Radios.
 - The list could go on forever.
- It's 1,000 hobbies rolled into one.
- For many folks in this room:
 - It's probably about technology.
 - Equipment, Software, Antennas, Physics, Science.
 - It's about learning, knowledge, and teaching.
- Let's look forward a bit.

Key Technologies

- Our future amateur operational & experimental capability is dependent on three key technologies:
 - Silicon
 - The foundation of modern electronics.
 - Computation
 - The ability to process information.
 - Data Networking
 - The ability to move (and store) information.



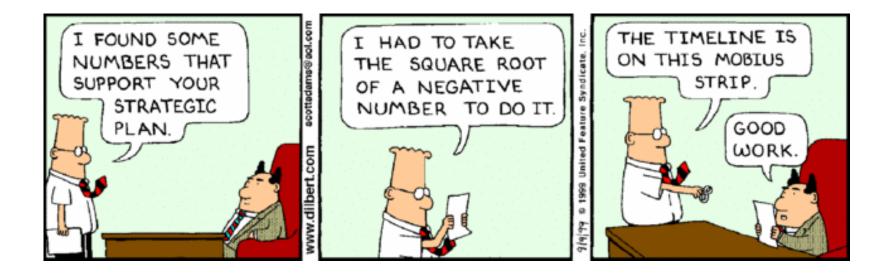
Silicon


- Many recent advances dependent on Silicon.
 - Especially: CPU, GPU, FPGA, RAM, FLASH, Ethernet
- Reduction in Silicon geometry:
 - Reduces Cost per transistor.
 - Reduces Power dissipation per transistor.
 - Power-per-unit-area still increasing
 - Increases Switching speed of a transistor.
 - Permits system-on-chip (SOC) due to phenomenal transistor count per die.
- However:
 - Features are smaller than optical wavelength.
 - Photo-lithography: Ultra-Violet, phase-masks, Extreme Ultra-Violet.
 - 7 & 10 nm devices may need 90 masks, ~\$15m mask set.
 - High fixed-cost. Concern for low- & medium- production volume devices.
 - It's getting difficult to turn off a transistor.
 - The channel is short, electric field can't pinch off.
 - High-dielectric constant gate insulator, Fin-FET, Gate-All-Around FET
 - Gate oxide approaching 5 atoms thickness.
 - Quantum tunneling of gate charge into the channel.
 - CPU clock rate Power-Dissipation-limited last ~10 years.

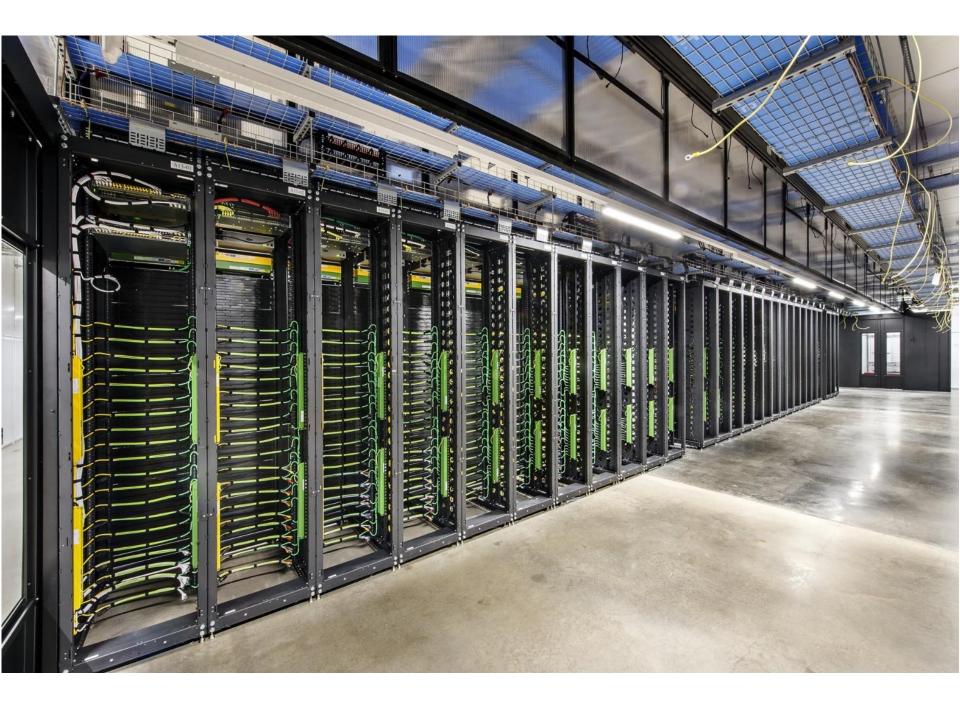
New CMOS Silicon

- Integrated RF/Mixer + LO synthesizer chips becoming available.
 - Analog Devices, Lime Micro, Mirics to name a few.
- Provide range of input frequencies.
 - Mirics: 150 KHz 2 GHz. [used in SDRPlay]
 - Analog Devices: 100 MHz 6 GHz [used in Ettus SDR radios]
 - Lime Micro: up to 12 GHz (multi chip solution).
- Some paired with dual ADC + DSP + Host interface chip (USB typical).
- Some provide AGC, typically not for SSB.

Analog Devices AD9361


- Single Chip 70 MHz 6 GHz.
- 2 Rx + 2 Tx (2x2 MIMO)
- 12-bit ADCs and DACs
- Channel BW: 200 KHz to 56
 MHz
- Includes LNAs, LO Synthesizer, and RF AGC.

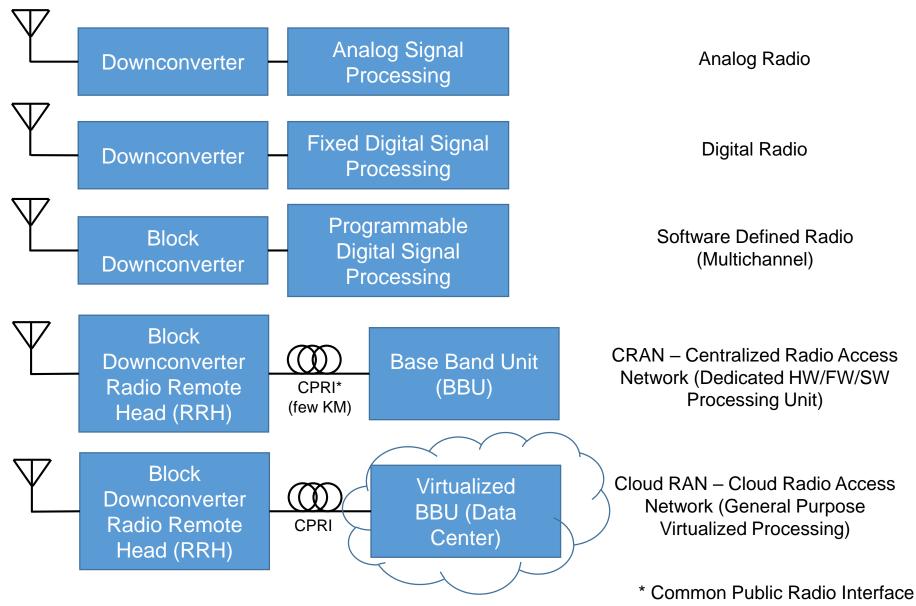
60+ GHz SDR Chipsets


- Growing interest in millimeter wave for 5G. Chipsets for 60-80 GHz available.
- Open source Gnuradio / Hittite drivers: Per Zetterberg.

Computer System Enhancements

- As experimenters, we need faster computer systems.
 - Can no longer get there via CPU speed.
 - Computer gamers driving Consumer bleeding-edge.
- Alternate approaches:
 - Speed up memory access
 - Larger on-die cache. 15 Mb on some devices.
 - Massive DRAM: servers now up to 1.5 TB
 - PCIe SSD replace mechanical hard drive (AHCI \rightarrow NVME).
 - Parallel computing
 - 2017: Consumer CPUs increasing to ~10 cores / 20 threads.
 - Xeon / Epyc devices in 20~36 core range.
 - 2-4 Xeon devices per server.
 - GPU computation: 10,000 cores now feasible.
 - FPGA co-processing: Customized to the problem.
- I/O electrical signals soon becoming a bottleneck.
 - Multi-level signaling, active pre- and post- equalization
 - NRZ \rightarrow PAM4: 25 Gsym/sec = 50 Gb/s per lane.
 - The reach is a couple inches on PC board.
 - 400GE = 25G PAM4 x 8 for 2~3 meter reach on twin-axial cable.

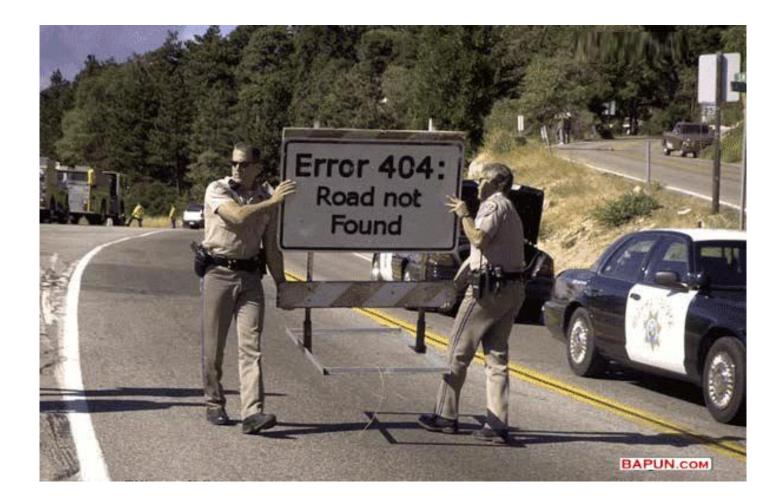
What is a Data Center?


- Cluster of 50,000~80,000 server blades.
 - Standardized HW, SW Virtualization.
- Makes networked parallelism affordable on an ondemand basis.
 - \$0.015 ~ \$2.00 per CPU hour depending on resources.
- CPU (increasingly also GPU) does almost any function
 - Datacom processing (NFV)
 - Application functions and services
 - Data analysis, search, filter/map/reduce, etc.
 - Signal processing.
- Massively interconnected Ethernet
 - High speed Ethernet switching, low cost copper and fiber.
 - 10 GE now leaking into high-end Consumer products.
- Computer System technology is driven by the data center.
 - Technology leaks into consumer products after several years.

Software Defined Radio

- For many, it's simply a different implementation of the same old radio.
 - Some new features enabled: adaptive pre-distortion, wideband noise mitigation, etc.
- What could SDR otherwise do?
- Form the basis of growing low-cost test equipment implementations.
 - Spectrum Analyzer, Network Analyzer.
 - Change FPGA image \rightarrow Oscilloscope, Bode Analyzer.
 - RFI Test Set and signature analysis. Networked coherent localization.
- Capture wide spectral bands, transient capture.
 - Save to disk, or make available on the internet.
 - Post-contest sponsor verification.
 - Web-based SDR reception.
- Emergent silicon \rightarrow Low-cost all-mode VHF, UHF, Microwave radios.
 - High performance point-to-point data links.
 - Radar-like applications with increasing resolution, excellent sensitivity.
- Citizen Science
 - Eclipse analysis, ionospheric sounding, sensor fusion.

Evolution of Mobile Radio



Lessons from Mobile Evolution

- FPGAs made programmable DSP (and thus SDR) initially possible.
- Separation of the processing from the radio head makes the RF small, lower power, remotable.
- Virtualization of baseband processing uses general purpose CPU and GPU in a data center.
 - Eliminating dedicated hardware.
 - Supporting massive number of radio channels and antennas.
 - Providing flexibility, easy to change.
 - Chaining functions, coupling to the internet.

Ham Radio example of the Evolution

- FPGA makes the second generation of SDR much more performant.
- Local general purpose CPU (and GPU) can process baseband information.
 - <u>New capability</u>: advanced signal processing
 - <u>New capability</u>: wideband spectral recording and analysis.
- Condensation and chaining of information onto the web (e.g. WSPR spots).
 - <u>New capability</u>: propagation analysis.

Connections (James Burke, BBC)

- 1978 (UK) 1979 (USA) TV Series.
- Self-motivated (\$) individuals invent (seemingly) unrelated technologies.
- These form a web of interconnected technologies that lead to new inventions that no one anticipates.

Conjecture:

Consumer Computing and Networking advances +

Open-source HW, FW, and SW make discovery and sharing vastly easier.

= Much more rapid solutions that can't be easily anticipated.

"If you don't read the newspaper, you're uninformed. If you read the newspaper, you're mis-informed"

```
-- Mark Twain
```

- Your personal experience, experiments, projects, and measurements are more valuable to true understanding.
- Build, Experiment, Publish.
- Invent Ham Radio hobby # 1001

