
TAPR DCC Noise in a Digital World

September 15, 2017

Stephen Hicks, N5AC

VP Engineering, FlexRadio Systems

About me

TAPR DCC Noise in a Digital World

Agenda

Knowing Noise

dB, dBm, mW, W, Oh my...

Noise Figure, Sensitivity and Gain

FLEX-6000 Family Line-Up

Q&A

- Why does the noise floor in my panadapter drop when I change panadapter bandwidth?
- Is my radio out of calibration if my receiver noise measurement doesn't match my panadapter noise floor?
- I can see a signal in my panadapter, but I can't hear it... my radio must be broken, right?

- You're selecting a radio ... do you care about sensitivity, noise figure, preamp gain, something else?
- Is there a relationship between any of these numbers?
- Your buddy is boasting about his rig's sensitivity (which is 3dB better than yours). Is this important? Should you be ashamed and trade rigs?

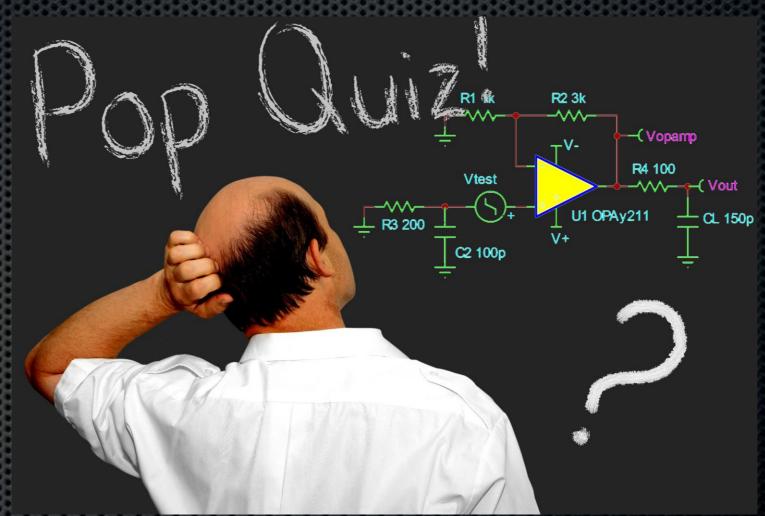
I looked up the ADC in my direct sampling receiver, it says 16-bits with an ENOB of 12.3 bits and 74dB SNR. I know there are 6dB per bit of dynamic range. 12.3 x 6 = 74. Heck, even if I could use all 16-bits, 16 x 6 = 96dB. My radio manufacturer says it has 105dB of 3rd order dynamic range.

He's lying, right?

FlexRadio Systems®
Software Defined Radios

dBm, dB, et. al.

Quick review


- dB is a measurement of difference in two things (relative)
- dBm is a measurement of power (dB wrt 1mW)
- 2x power = 3dB, 10x power = 10dB
- Multiplication in power (W) = Addition in dB
- \rightarrow 1W = 1,000mW ... 1000 = 10x10x10 = 30dB so 0dBm + 30dB = +30dBm

dBm, dB, et. al.

POP QUIZ!

- What is 20x power?
- 10x = 10dB
 2x = 3dB
 so 10 x 2 = 20, and
 therefore
 10dB + 3dB = 13dB
- What is 200mW in dBm?
- well 1mW = 0dBm
 200 = 10 x 10 x 2 ...so
 10dB + 10dB + 3dB + 0dBm = 23dBm

dBm, dB, et. al. POP QUIZ!

- What is 5W in dBm?
- TRICKY! well 1W = 30dBm $5W = 1W \times 10 / 2$ = 30dBm + 10dB - 3db = +37dBm
- What is 4W in dBm?
- well 1W = 30dBm $4W = 1W \times 2 \times 2$ = 30dBm + 3dB + 3dB = +36dBm

Knowing Noise Sources They're everywhere

- Thermal noise
- Gaussian noise
- Flicker Noise
- Quantization Noise
- Phase Noise
- Additive Noise

- Powerline Noise
- Splatter
- Power Supply Noise
- Atmospheric Noise
- Spark Noise
- ⊳ EMI

Noise can be complicated and even those that know it well will have to think and figure on some questions

Noise and Bandwidth What is the *Noise Floor*?

We often hear "Noise Floor," we know how to point at it, but what is it?

Noise Behavior

Better get a bucket...

What your ADC sees:

Think of noise as trough of water

Noise Behavior Better get a bucket...

What Happens if I split the trough into two troughs?

Water level drops by a factor of two (3dB)

(note: all computations in the water domain)

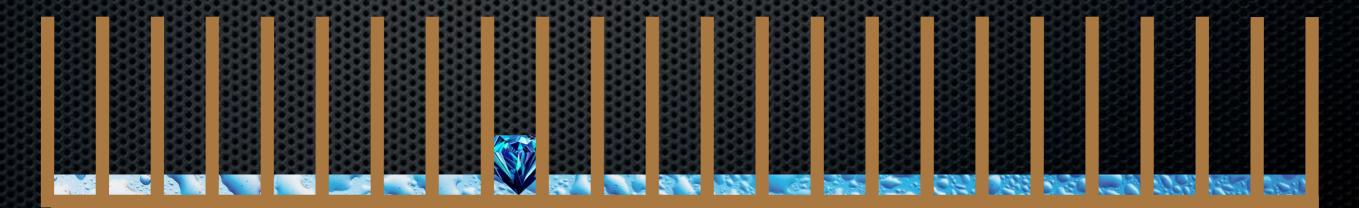
Noise Behavior

Find the diamond...

There's a diamond at the bottom of the trough

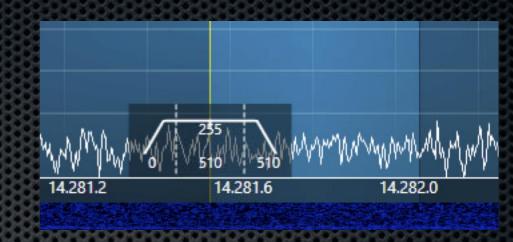
I'll give you as many bins as you want, in many sizes (all factors of 2)

How can you find the diamond?


Noise Behavior

Find the diamond...

What if you split the water into 1024 buckets, each 1/1024 the size of the original trough?


Congratulations, you've just created the first water trough FFT!

a.k.a. the WTFFT

Noise Behavior OK, what about a RADIO?

- In a receiver (on an FFT bin), we filter
- Bandwidth limited to receiver bandwidth
- Noise is reduced in dB by:

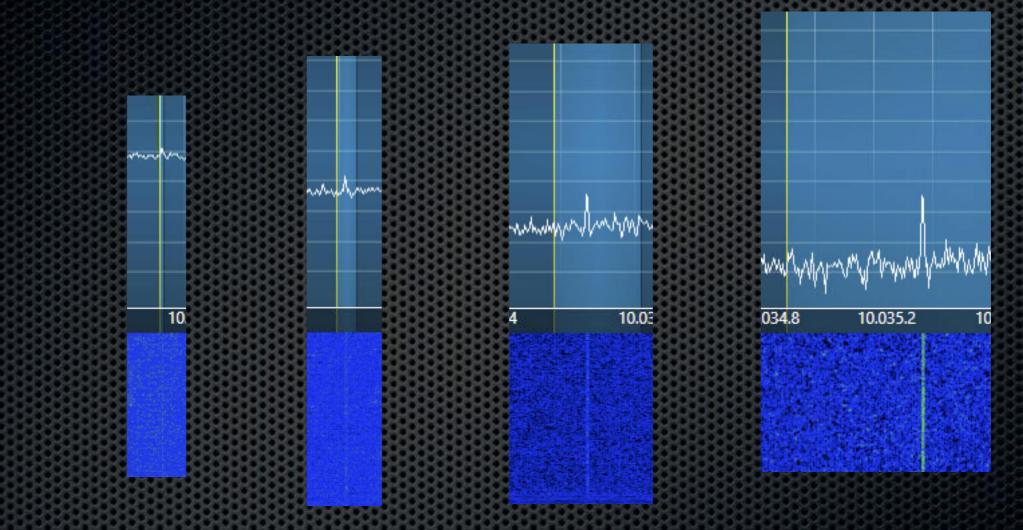
$$10\log_{10}igg(rac{BW}{BW}_{
m final}igg)$$

Think of an FFT as a series of receiver S-Meters stacked next to each other

Noise Behavior OK fine, but how does this work in a RADIO?

So for our 1024-bin WTFFT, we reduced the water in each bin by:

$$10\log_{10} \left(\frac{1024}{1} \right) = 30.1dB$$


Noise Behavior

Why doesn't my signal go down too?

- If your signal is contained entirely in a single bin, you lose none of it by filtering
- If your noise is evenly distributed, you reduce it as shown in the previous slide
- If you split the signal (evenly) across two bins, it will reduce by 3dB in any one bin
- For the pedantic: yes we're ignoring window leakage, scalloping, etc.

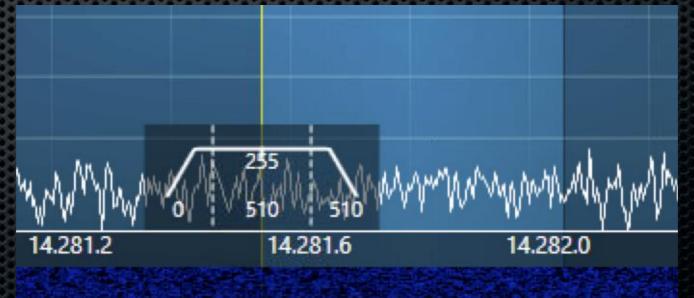
Noise Behavior wsjt

Noise drops as we narrow bandwidth, exposing the signal

Noise Behavior Does this ever NOT work?

- YES, when not evenly distributed (not AWGN)
- For example: Frequency dependent noise source
- Special tools...

Noise Behavior Review


- QUESTION: Why does the noise floor in my panadapter drop when I change panadapter bandwidth?
- ANSWER: We reduce the noise by 3dB each time we reduce the bandwidth by half

Noise Behavior Review

- QUESTION: Is my radio out of calibration if my receiver noise measurement doesn't match my panadapter noise floor?
- ANSWER: NO, look at the difference in receiver bandwidth and panadapter FFT bin

size

Noise Behavior Review

- QUESTION: I can see a signal in my panadapter, but I can't hear it... my radio must be broken, right??
- ANSWER: NO, a good FFT is generally a better instrument than your ear/brain when the bin size is small (<~50Hz).</p>

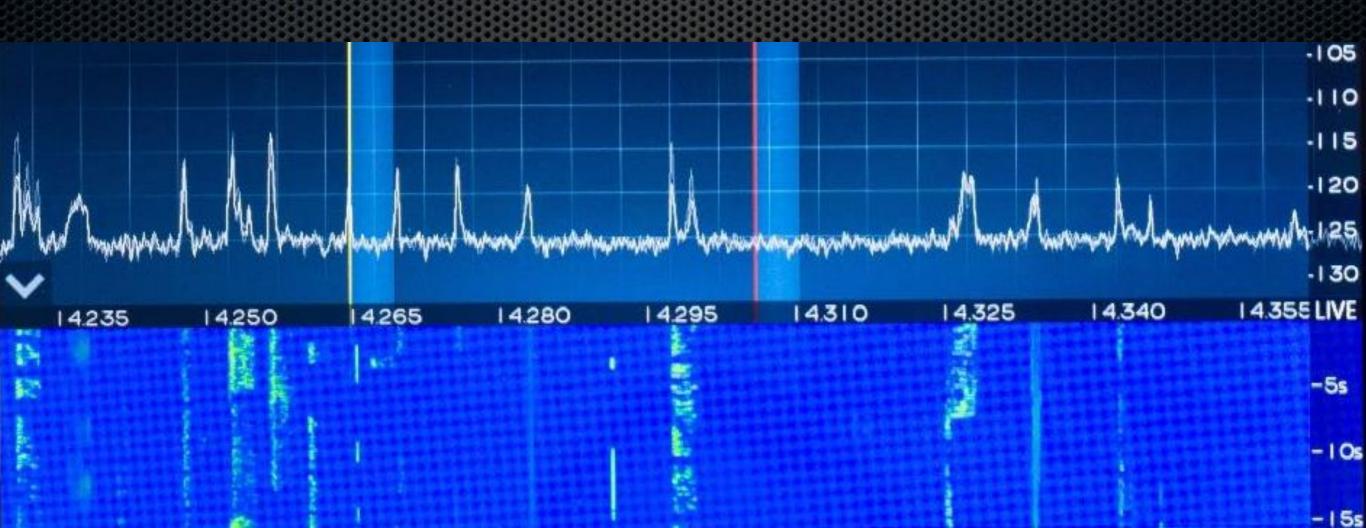
Noise Behavior

Review

- QUESTION: Assuming your signal strength in your 500Hz receiver (noise only) says -100dBm and your panadapter shows -120dBm, what is your FFT bin size?
- ▶ ANSWER: 5Hz

$$10\log_{10}\left(\frac{500}{x}\right) = 20dB$$

Noise Floor


Terminology

- "Noise Floor" is used haphazardly
- Vendors, ARRL, etc. use 500Hz bandwidth
- Noise Floor down as bandwidth is decreased
- WSJT, CW, etc take advantage of this
- "12dB below the noise floor," they mean the 500Hz noise floor. If their detector (filtered receiver) is only 10Hz wide, they are hearing 5dB <u>above</u> the actual noise floor for the receiver.

Noise and Bandwidth What is the *Noise Floor*?

"That's pretty — what's the noise floor of that receiver, there?"

I looked up the ADC in my direct sampling receiver, it says 16-bits with an ENOB of 12.3 bits and 74dB SNR. I know there are 6dB per bit of dynamic range. 12.3 x 6 = 74. Heck, even if I could use all 16-bits, 16 x 6 = 96dB. My radio manufacturer says it has 105dB of 3rd order dynamic range.

He's lying, right?

FlexRadio Systems®
Software Defined Radios

- 12.4 bits ENOB is spec'd at the full bandwidth of the converter
- We know how to convert lets say we're going from 100MHz to 48kHz

$$10\log_{10}\left(\frac{100,000,000}{48,000}\right) = 33dB$$

33dB+74dB = 107dB = 17.8-bitsActual bits toggling = 16 * 6 + 33 / 6 = 21.5-bits

NO, He's not lying

Noise Figure, Sensitivity & Gain

Oh My!

You bought a 6m radio with a stated noise figure of 5dB

Where is the noise floor?

A. -128dBm
D. Insufficient
Information

B. -135dBm C. -142dBm

Noise Figure, Sensitivity & Gain Oh My!

TRICK QUESTION!

Noise Figure, Sensitivity & Gain

Oh My!

You bought a 6m radio with a stated noise figure of 5dB

Where is the noise floor?

A. -128dBm B. -135dBm D. Insufficient Information

C. -142dBm

What you need to know

- Golden Rule: OdB NF = -174dBm in 1Hz
- To calculate the noise floor in ANY bandwidth given the NF and bandwidth:

-174dBm + NF + (dB bandwidth difference from 1Hz)

For example, a receiver with a 5dB NF and a bandwidth of 500Hz has a noise floor of:

$$-174dBm + 5dB + (10 + 10 + 10 - 3) = -142dBm$$

What you need to know

What's the golden rule?

0dB NF = -174dBm in 1Hz

Cascaded Noise Figure

Cascaded NF tells us the final NF and Gain given a series of preamplifiers / attenuators heading into a receiver

$$MF_{c} = 10\log(m)_{c} + \frac{M}{G_{m-1}} + \dots)$$

Cascaded Noise Figure

Example: 10dB NF receiver with a 5dB NF preamp with 10dB gain:

Select number of o	cascaded amplifiers:	
Noise	e(dB)	Gain(dB)
5	10	
10	0	
Result:	Total Noise Figure: 6.08 Total Gain: 10.0	

Noise Figure & Sensitivity

What's Important?

	Sensitivity Noise Floor in 500Hz		Preamp NF / Gain	
Radio 1	-136dBm	13dB	5dB / 10dB	
Radio 2	-123dBm	24dB	2dB / 30dB	
Radio 3	-139dBm	8dB	7dB / 20dB	

Noise Figure & Sensitivity What's Important?

Select number of casca	aded amplifiers:	
Noise(dB)	Gai	n(dB)
5	10	
13	0	
Result:	Calculate	7.0dB
Tot	tal Noise Figure: 7.039 dB Total Gain: 10.00 dB	

Noise Figure & Sensitivity What's Important?

Select number of o	cascaded amplifi	ers:	
Noise	e(dB)		Gain(dB)
2		30	
24		0	
	Calc	ulate	
Result:			2.6dB
	Total Noise Fig Total (gure: 2.637 d Gain: 30.00 d	

Noise Figure & Sensitivity What's Important?

Select number of	cascaded amplifie	ers:		
Nois	e(dB)		Gair	n(dB)
7		20		
8	0			
	Calcu	ılate		
Result:				7.0dB
	Total Noise Fig Total G	ure: 7. iain: 20		

Noise Figure & Sensitivity

What's Important?

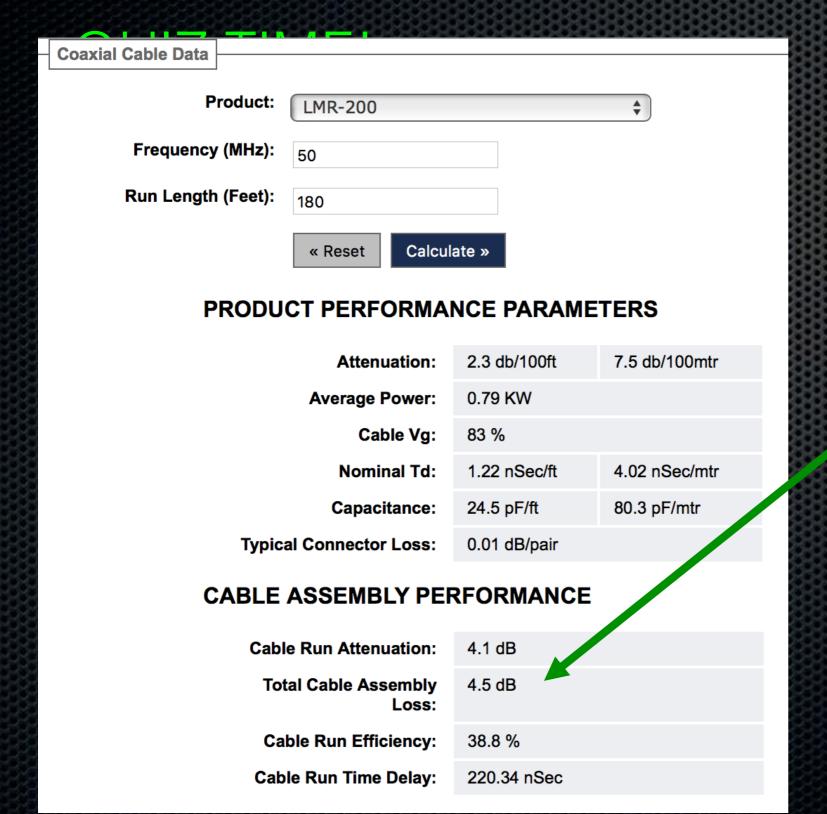
	Sensitivity Noise Floor in 500Hz	NF	Preamp NF / Gain	System NF
Radio 1	-136dBm	13dB	5dB / 10dB	7dB
Radio 2	-123dBm	24dB	2dB / 30dB	2.6dB
io 3	-139dBm	8dB	7dB / 20dB	7dB

radio with the "worst sensitivity" has the best NF Go Figure!

What you need to know

What's the golden rule?

0dB NF = -174dBm in 1Hz



QUIZ TIME!

You have figured out your radio with the preamp has a 6dB NF. You run coax from your radio to the tower and up the tower to your 6m antenna. You're using 180' of LMR-200 from the rig to the antenna.

What is your system Noise Figure?

180' LMR-200 @ 50MHz

4.5dB LOSS

What you need to know

Select number of	cascaded amplifie	ers:	
Nois	e(dB)	Gai	n(dB)
4.5		-4.5	
6		0	
Result:	Calcu	ulate	10.5dB
	Total Noise Fig Total G	ure: 10.50 dB iain: -4.500 dB	

QUIZ TIME!

You have figured out your radio with the preamp has a 6dB NF. ...

What is your system Noise Figure?

10.5dB!!!

What now?

MAST MOUNTED PREAMP or BETTER COAX

QUIZ TIME!

You realize your coax is killing you. You add a mast mounted preamp with 0.8dB NF and 10-20dB of gain (adjustable). What's your NF now?

Select number of	cascaded amplifi	ers:	
Nois	e(dB)	Gai	n(dB)
0.8		10	
4.5		-4.5	
6		0	
Result:	Calc	ulate	3.5dB
	•	gure: 3.472 dB Gain: 5.500 dB	
	Total (Gain: 5.500 dB	

Select number of o	cascaded amplifie	ers:	
3 💠			
Noise	e(dB)		Gain(dB)
0.8		20	
4.5		-4.5	
6		0	
Result:	Calcu	ulate	1.2dB
	Total Noise Fig Total G	gure: 1.154 di Gain: 15.50 di	

I've got it!!

I totally understand: You should add preamps to lower your NF so you can hear weak signals!

NO... only lower the noise floor to ~6-10dB below your atmospheric noise. Lower just reduces your dynamic range

QUIZ TIME!

How do you decide where to set the gain??

As you move from 10-20dB, you lower your noise floor by <u>3.5-1.2 = 2.3dB</u>, but at the same time, your overload is lowered by <u>10dB</u>. The overall affect on DR is 2.3-10=<u>-</u>7.7dB

Noise Figure, Sensitivity & Gain QUIZ TIME!

BEFORE

2.3dB lower

noise floor

AFTER

10dB loss in overload

net loss of 7.7dB DR

≫FlexRadio Sys

HF Atmospharic Naico

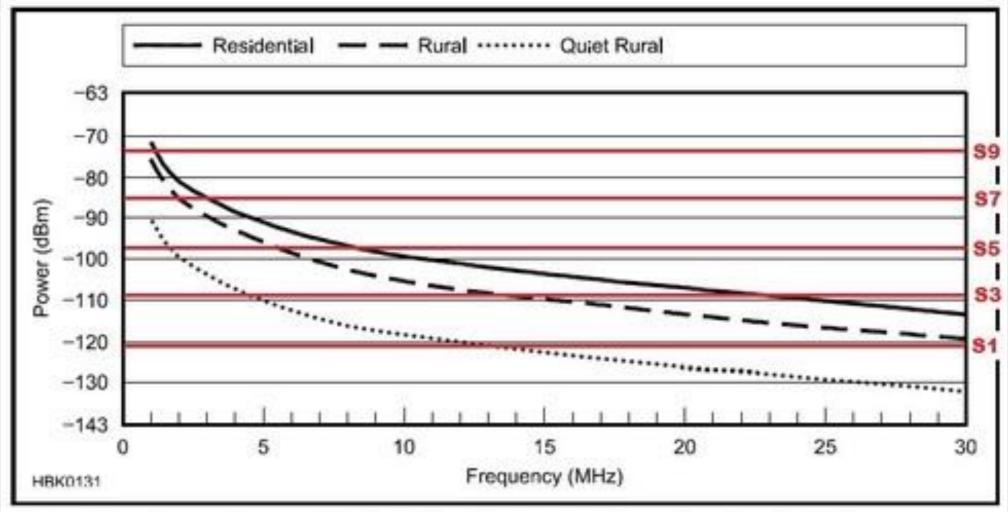


Fig 19.37 — Typical noise levels versus frequency for various environments. (Man-made noise in a 500-Hz bandwidth, from Rec. ITU-R P.372.7, Radio Noise)

Propagation of Radio Signals 19.31

Review

- QUESTION: Your buddy is boasting about his rig's sensitivity (which is 3dB better than yours). Is this important? Should you be ashamed and trade rigs?
- ANSWER: No, there are many other factors to consider including preamps, ergonomics, RMDR, DR, etc.

TAPR DCC Noise in a Digital World

Agenda

The Blank Look — We can teach it!

Knowing Noise

dB, dBm, mW, W, Oh my...

Noise Figure, Sensitivity and Gain

FLEX-6000 Family Line-Up

Q&A

FlexRadio Product Overview

Maestro

Take your radio anywhere...

- Local or remote
- In front of the rig or across the world
- Production stalled for months due to supplier problem
- Problem now resolved and production resuming

PowerGenius XLTM

FlexRadio Systems®
Software Defined Radios

Power Genius XL

- ▶ 1500W, 33lbs
- 220V *or* 110V (reduced power)
- ▶ TRUE SO2R
- Works with any transceiver (CAT, CI-V, BCD, Ethernet)

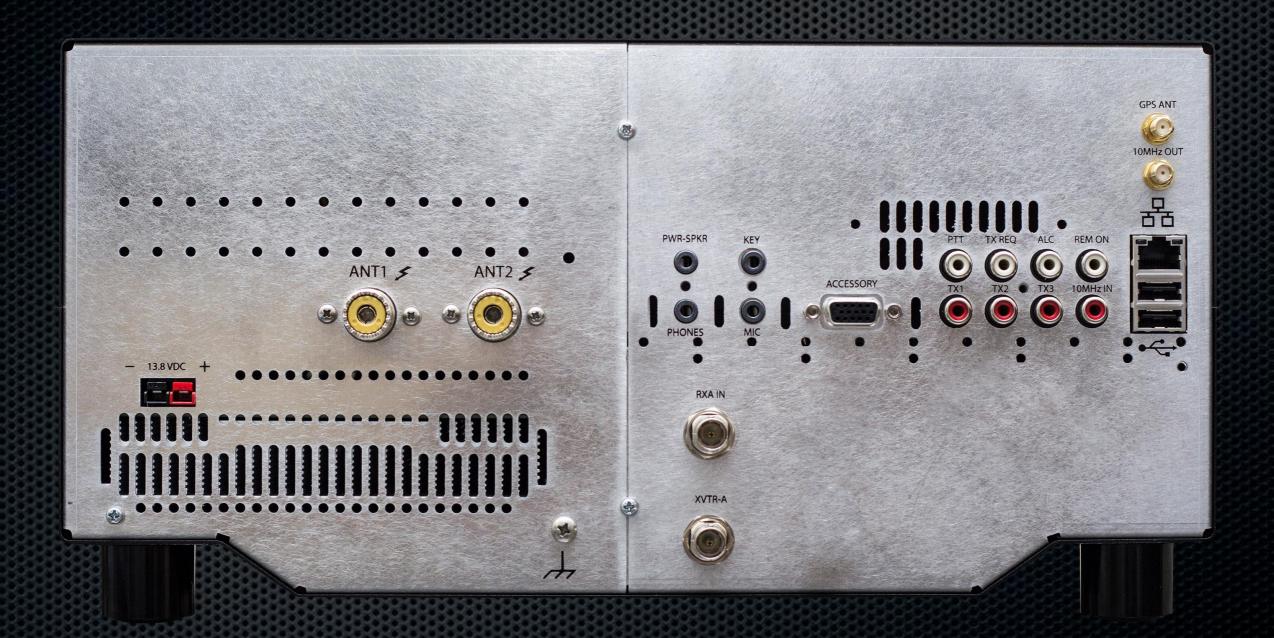
PowerGenius XL

Sample RF OUT

Control

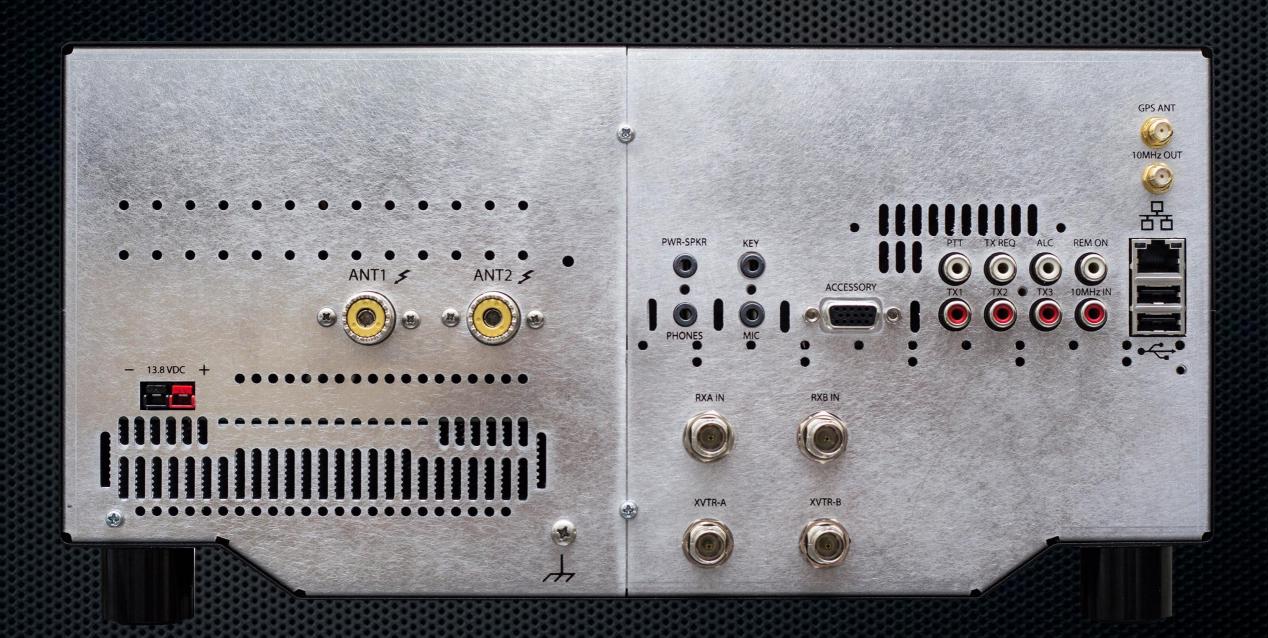
Introducing... FELEX66600

FLEX-6400/FLEX-6600


Reimagined

- Both models:
 - Run SmartSDR just like all FLEX-6000s
 - Improved receiver
 - TWO VFO Controls
 - MARS/SHARES/CAP Option
 - ▶ 116db RMDR
 - Full Duplex
- ▶ FLEX-6600
 - Enhanced preselector
 - Two XVTR Ports / SO2R

FLEX-6400

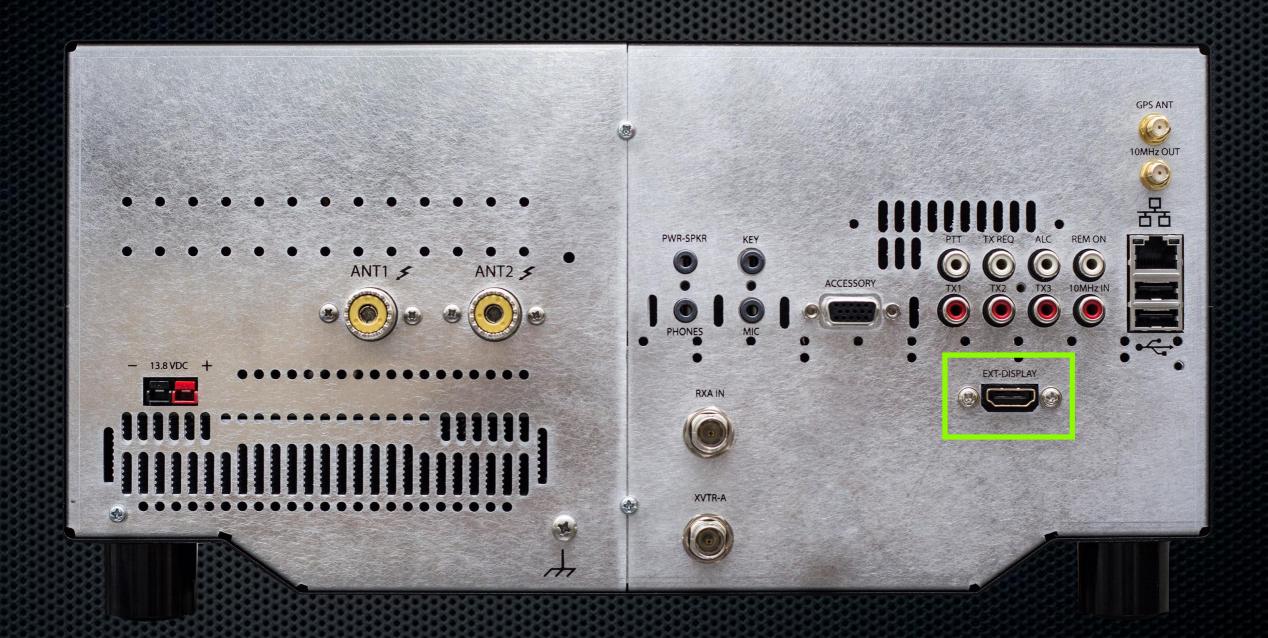

Rear View

FLEX-6600

Rear View

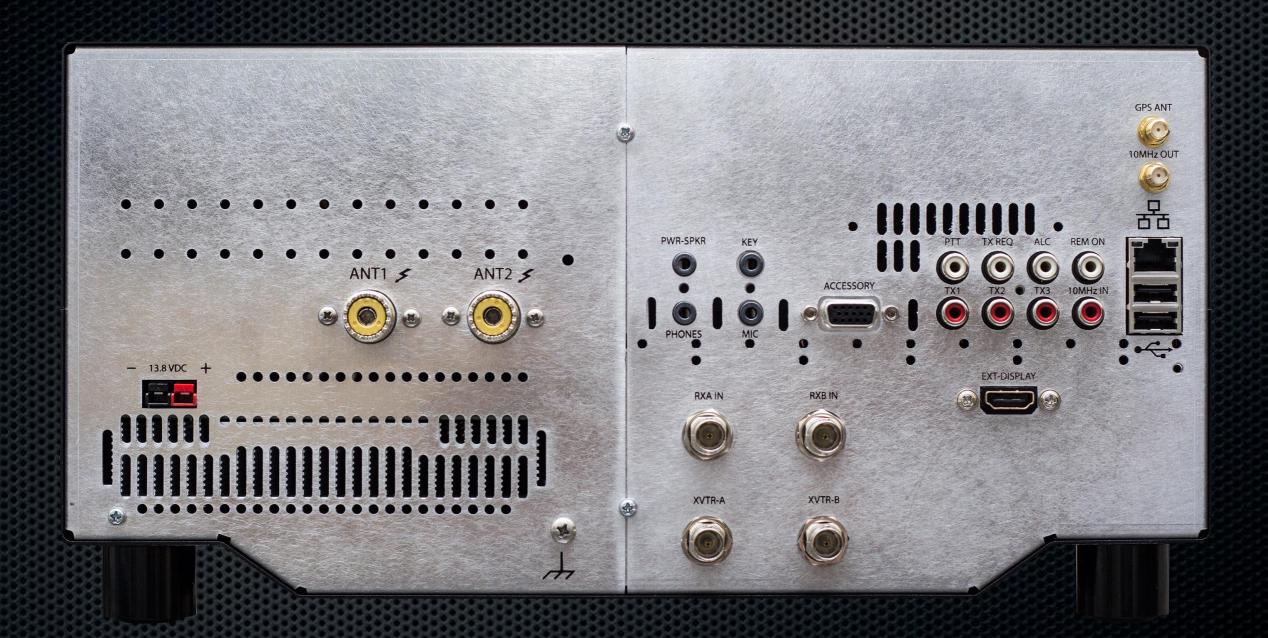
FLEX-6400M & FLEX-6600M

FLEX-6400M & FLEX-6600M


Features

- All the capabilities of a FLEX-6400/6600
- Best screen available: 1920x1200 IPS CAP Touch
- Support for external HDMI display
- PLUS front panel with touch screen and controls
- Builds on excellent Maestro design
- Includes SmartLink for remote operation
- Can be used with Maestro, iPad, DogparkSDR, etc.

FLEX-6400M


Rear View

FLEX-6600M

Rear View

FLEX-6000 Lineup

	6400	6400M	6600	6600M	6700
RX/Pan	2/2	2/2	4/4	4/4	8/8
Pan Width	7MHz	7MHz	14MHz	14MHz	14MHz
SCU	1	1	2	2	2
SO2R			$ \checkmark $	< < < < < < < < < < < < < < < < < < <	$ \checkmark $
RX Presel	$ \checkmark $	< < < < < < < < < < < < < < < < < < <		$\langle\!\langle \rangle\!\langle \rangle$	$ \checkmark $
XVTR	1/2	1/2	2/4	2/4	1
ATU	OPT	OPT	$ \checkmark $		$ \checkmark $
GPSDO	OPT	OPT	OPT	OPT	OPT
MARS	OPT	OPT	OPT	OPT	$ \checkmark $
Displ/Knob		$ \checkmark $		$ \checkmark $	
	\$1,999	\$2,999	\$3,999	\$4,999	\$6,999

QUESTIONS?