
185

Packet Compressed Sensing Imaging (PCSI):

Robust Image Transmission over Noisy Channels

Scott Howard, Grant Barthelmes, Cara Ravasio,
Lisa Huang, Benjamin Poag, & Varun Mannam

Department of Electrical Engineering, University of Notre Dame

Abstract

Packet Compressed Sensing Imaging (PCSI) is digital unconnected
image transmission method resilient to packet loss. The goal is to de-
velop a robust image transmission method that is computationally trivial
to transmit (e.g., compatible with low-power 8-bit microcontrollers) and
well suited for weak signal environments where packets are likely to be
lost. In other image transmission techniques, noise and packet loss leads
to parts of the image being distorted or missing. In PCSI, every packet
contains random pixel information from the entire image, and each ad-
ditional packet received (in any order) simply enhances image quality.
Satisfactory SSTV resolution (320x240 pixel) images can be received in
≈1-2 minutes when transmitted at 1200 baud AFSK, which is on par with
analog SSTV transmission time. Image transmission and reception can
occur simultaneously on a computer, and multiple images can be received
from multiple stations simultaneously - allowing for the creation of “image
nets.” This paper presents a simple computer application for Windows,
Mac, and Linux that implements PCSI transmission and reception on any
KISS compatible hardware or software modem on any band and digital
mode.

Contents

1 Introduction 2
1.1 Radio Image Transmission Modes Comparison 2
1.2 PCSI’s Predecessors . 4

This work is licensed under a Creative Commons “Attribution 4.0
International” license.

Presented at ARRL/TAPR DCC 2020

1

186

2 The Magic in the Math 5
2.1 Compressed Sensing Imaging . 5
2.2 Chroma Compression and Color Depth 6

3 Implementation: The PDP Specification 7
3.1 What is the PDP? . 7
3.2 PDP Specification Scope . 7

3.2.1 AX.25 Framing . 8
3.2.2 SSDV-style Framing . 8
3.2.3 Framing Comparison . 9

3.3 PDP Specification Details . 10
3.3.1 Packet Payload Preparation 10
3.3.2 Pseudo-random Number Generation for Picking Pixels . . 12
3.3.3 PCSI Payload base91 Encoding 12

3.4 Reconstructing PCSI Images . 13

4 Future Work 13

1 Introduction

Packet compressed sensing imaging (PCSI) is a solution to the technical chal-
lenge of transmitting a complete image to multiple receivers over a channel
where each receiving station may miss different parts of the transmission due
to channel noise. PCSI is implemented in a way such that a low-power micro-
controller (e.g., Arduino) is capable of transmitting the image from challenging
and remote environments (e.g., high altitude balloon).

PCSI achieves these capabilities by using a technique known as ‘compressed
sensing imaging,” a computational method that allows one to reconstruct a
complete image when only given a random selection of pixels from that image.
Therefore, even after receiving only a single packet of random pixels, the receiver
can begin to reconstruct the complete original image. Each additional packet
received further increasing image quality. PCSI is, therefore, robust against
packet loss.

The initial version of an open-source software tool1 that implements sending
and receiving PCSI in Python for Windows, macOS, and Linux is illustrated in
Figure 1. The image experienced ≈ 50% packet loss, yet the image was fully
reconstructed (bottom frame). In other techniques, 1/2 of the image would be
completely missing.

1.1 Radio Image Transmission Modes Comparison

When transmitting an image, the operator is presented with many possible
methods and must select an image transfer method that best suits the applica-
tion. The following is a quick summary of popular techniques.

1https://maqifrnswa.github.io/PCSI/

2

187

Figure 1: Demonstration of PCSI using pcsiGUI, an open-source tool written in
Python for Windows, macOS, and Linux computers. Only 53.6% of the packets
were received (indicated by the red pixels in the top frame), yet the entire image
can be reconstructed (bottom image). The software tool connects to any KISS
compatible TNC or software modem and is capable of simultaneous (duplex)
receiving/transmitting, and capable of receiving multiple images from multiple
stations simultaneously.

3

188

Analog transmission can either encode an image’s color values using fre-
quency modulation (as in SSTV) or amplitude modulation (as in radiofax). In
all cases, each point is transmitted sequentially; therefore, channel noise and
signal loss leads to color distortion and pixel loss.

Digital techniques divide an image into individual pixels and transmit the
quantized (i.e., represented in binary) values of each pixel’s color channels as
groups of data in packets. Each packet contains additional information that
allows the receiver to check if the received packet was distorted during trans-
mission (e.g., a “checksum” as used in AX.25), and more recently, can correct
for some errors using forward error correcting (FEC) codes (as used in FX.25).
In both cases, unrecoverable errors lead to complete loss of pixel information
for parts of the image.

Digital techniques also allow for the use of compression to send image data
efficiently in fewer bits. A great example of this is slow scan digital video2

(SSDV). SSDV was developed by Philip Heron with the UK’s high altitude
ballooning community to transmit high-quality images. The technique takes
images, converts them to a specific type of JPEG file, and transmits sections of
the JPEG file in packets using FEC. This method transmits high quality im-
ages successfully; however, JPEG encoding and FEC generation is prohibitively
complex for low-memory microcontrollers, and signal loss leads to missing parts
of the image.

Hence, there is a need to develop a computationally simple image transfer
method that is robust to signal loss and channel noise.

1.2 PCSI’s Predecessors

In developing PCSI, we found that the idea of transmitting limited information
over a noise channel while ‘filling in the blanks” at the receiving end were present
in at least two other technologies.

APRS Vision System: At the 1997 DCC, Bob Bruninga (WB4APR)
proposed the “APRS Vision System.”3 That approach was an attempt to relay
imaging information over the APRS network. The idea was to transmit APRS
packets that contain increasingly higher amounts of spatial information content.
The first packet contained an extremely low quality image, and each subsequent
packet doubled the resolution. When the receiver feels the image is “clear
enough” (i.e., the receiver can ”fill in the gaps” in the image), the receiver can
tell the sender to stop. This way the receiver can possibly control or react to the
image before the whole image became “clear.” However, this system required
that every previous packet had been received perfectly for subsequent packets to
be used, and the receiver needed to communicate with transmitter to indicate
missed packets and to stop. Any missed packet caused the whole system to fail
from that point forward.

Hellschreiber: This mode, developed in the mid 20th century, is a fasci-

2https://ukhas.org.uk/guides:ssdv
3https://www.tapr.org/pdf/DCC1997-APRSvision-WB4APR.pdf

4

189

nating approach that enabled robust transmission of text over noisy channels.4

Each character of text to be transmitted is converted in to a 7x7 pixel image
of that character. Each character is then transmitted using extremely nar-
row bandwidth transmission (e.g., on-off CW keying). The receiver takes the
received data and reconstructs the image. The operator then “reads” the re-
sulting image text. Fundamentally, the operator’s trained character recognition
neural network (i.e., their brain) does pattern recognition to “fill the the gaps”
in the image that was caused by channel noise and signal loss. The entire mes-
sage can therefore be received even if some pixels were not received or if noise
distorted some pixels.

2 The Magic in the Math

While it may seem “too good to be true” to be able to fully reconstruct an
entire image using only a few randomly selected pixel values, PCSI is made pos-
sible via the magic in the math. PCSI accomplishes this using two techniques:
compressed sensing imaging and chroma compression.

2.1 Compressed Sensing Imaging

The mathematical concept of compressed sensing imaging exploits the fact that
data can often be represented in “sparse” domains. By “sparse,” we mean that
“most of the values are zero.” For example, compare a photograph of a blooming
garden during the day to a photograph of the night sky. The image of the garden
will have lots of red, green, and blue color, and therefore, many non-zero values
for the R, G, and B channels in the image. The night sky is mostly empty, with
a few stars, planets, and the moon. The nigh sky image, therefore, has many
pixels that have zero value in the R, G, or B channels. We would say the garden
image is not sparse while the night sky is sparse.

The magic happens when you convert the image from the spatial domain (i.e.,
a photograph) to another “domain.” For example, you can perform a mathe-
matical operation on an image called the discrete cosine transform (DCT). The
resulting DCT “image” ends up containing all the same information from the
original image, just arranged in a different way. You can then do an inverse
discrete cosine transform (IDCT) on the “DCT image,” and you will restore the
original image accurately. Why would we want to take the DCT of an image?
We do this because practically all images are “sparse” after taking the DCT.5

In other words, most of the values of the DCT of an image are zero! Both the
garden and night sky look sparse after taking the DCT!

How can we use the fact that most images are sparse after taking the DCT?
This is the magic of PCSI. You ask the computer to find the DCT of an image
such that:

4https://www.nonstopsystems.com/radio/hellschreiber-function-operation.htm
5Technically, the image is sparse in the DCT domain because cameras typically massively

“oversampling” an image.

5

190

1. The values for the DCT it finds has a lot of zeros in it (i.e., is sparse).

2. When you reconstruct the image using the values for the DCT the com-
puter found, the resulting real image closely matches whatever values of
the pixels that were received

Mathematically, you are asking the computer to do something similar to
“basis pursuit denoising” to find the simplest image (i.e., the fewest non-zero
DCT values) that also matches the pixels that you have received so far. You can
do that by using a computer program to find the values of the DCT of the final
image (X) such that it gives you the smallest value of the following expression:

∑

n

|IDCT(X)n − bn|2 + C
∑

|X| (1)

where bn is the value of the nth pixel that was received, and C is a scaling factor
(typically in the range of 3-5). The first term is the sum of the squared error
between the values of the pixels in the reconstructed image and the value of the
pixels that were actually received. Ideally, this will be zero. The second term is
the L1 norm, which is adding up all the values of X, and minimizing that term
is a good method for finding a sparse X. Once you find X, you can take the
IDCT of X to find the reconstructed image.

While the current PCSI reference implementation does use the above basis
pursuit technique, it is just one of many ways to reconstruct an image from
a collection of random pixels. PCSI actually does not require any particular
reconstruction algorithm as there may be variations in the method that yield
superior results.

2.2 Chroma Compression and Color Depth

PCSI image transmission speed is increased by reducing the bit depth of an
image and by utilizing chroma compression. These techniques are described
below.

• Bit Depth: Reducing an image from 24 bit color (8-bit in each of R, B,
G) to 12 bit color (or any other color depth) is trivial, may be acceptable
for many applications, and therefore is an option in PCSI.

• Chroma compression: The human eye has 20-times high density of
rods (greyscale photoreceptors) than cones (color photoreceptors), and
therefore detects greyscale with better spatial resolution than color. It
is therefore not necessary to transmit the same resolution for both luma
(brightness) and chroma (color information). JPEG exploits this by repre-
senting an image in the YCbCr color space and sub-sampling the chroma
channels (Cb and Cr) relative to the luma channel (Y). PCSI uses the same
general concept and achieves chroma compression by sending a combina-
tion of full-color (YCbCr) and greyscale-only (Y) pixels in each packet.
This step leads to the receiver receiving more Y channel pixels than Cb

6

191

and Cr channel pixels. Each channel, separately, undergoes the com-
pressed sensing basis pursuit to reconstruct the original channel, and the
channels are then converted back to RGB. The resulting image appears
to have much higher quality for the same number of packets.

3 Implementation: The PDP Specification

PCSI requires packet payloads such that each individual payload contains all
the information necessary to reconstruct a single image. To achieve that, the
pseudo-random datagram payload (PDP) specification has been developed. Ver-
sion 1.0.0 is described below.

3.1 What is the PDP?

PDP is a specification for the payloads of data packets such that each packet
contains all the information needed to reconstruct a single image. An image is
then transmitted as the collection of datagrams (i.e., packets in a connection-
less network). Unlike other packetized image transmission formats, the pixels
contained in a packet are selected in a pseudo-random, yet deterministic, way.
This allows images to be restored using compressed sensing techniques regardless
of packet loss.

3.2 PDP Specification Scope

The PDP spec merely defines the packet payload for the transmission of a
single image. It can be used in any packet protocol or digital mode. Framing is
independent of the specification. This allows for the separation of a “session”
(consisting of a sending station sending one or more images) from the minimal
content required for a single image. The “session” information is in the framing;
the image information is in the payload. The payload is designed to be similar
to SSDV.

For example, a PDP can be placed as the payload in:

• AX.25 amateur radio packets. Transmitted using any mode (e.g., AFSK,
PSK, etc.) Therefore it is compatible with APRS, TNCs, digipeaters,
software modems (direwolf, fldigi, soundmodem, etc.). Example imple-
mentation is in Section 3.2.1.

• SSDV-style framing done in a KISS TNC compatible way. Example im-
plementation is in Section 3.2.2.

• UDP or TCP (although the benefits of PCSI provide more benefit to
multicast UDP packets than connected TCP packets).

7

192

Name Size (bits) Description

Flag 8 HDLC flag ‘0x7E’
Dest. Address 56 Callsign of intended receiver OR alias of an

image net, encoded following AX.25 spec.
‘PCSI‘ recommended for general use.

Source Address 56 Sender’s callsign encoded following AX.25
spec. ‘PCSI’ recommended for general use.

Digi Addresses d× 56 d optional digipeater addresses, encoded fol-
lowing AX.25 spec.

Control 16 ‘0x03F0’ indicating UI frame with no re-
sponse requested, and no layer 3 imple-
mented

PDP N × 8 PDP data, N ≤ 256
FCS 16 CRC-CCITT
Flag 8 HDLC flag ‘0x7E’

Table 1: Example AX.25 framing that could be used for PCSI.

Offset (bytes) Name Size (bytes) Description

0 Flag 1 HDLC flag ‘0x7E’
1 Packet Identifier 1 ASCII ‘v’ = ‘0x76’
2 Callsign 4 Base-40 encoded call-

sign following SSDV
encoding convention

6 PDP N ≤ 256 PDP data
N+6 Checksum 2 CRC-CCITT
N+8 Flag 1 HDLC flag ‘0x7E’

Table 2: Example SSTV-style framing that could be used for PCSI.

3.2.1 AX.25 Framing

While not part of the PDP spec, an example of using AX.25 UI framing6 of a
PDP is given in Table 1. This is easily compatible with existing TNCs. This
framing adds at least 20 bytes of overhead.

3.2.2 SSDV-style Framing

While not part of the PDP spec, a simple session framing of PDP can be done in
a way that is compatible with existing KISS hardware and software TNCs. An
example is seen in Table 2. This example framing is designed to be easy to use
with any KISS TNC. One would simply send the concatenated “Packet Identifier
+ Callsign + PDP” and let the TNC add the flags and do the checksum. This
framing adds at least 9 bytes of overhead.

6https://www.tapr.org/pdf/AX25.2.2.pdf

8

193

101 102
0

0.2
0.4
0.6
0.8
1

N
et

E
ffi
ci
en
cy

(%
) BER = 10−5

101 102
0

0.2
0.4
0.6
0.8
1

BER = 10−4

101 102
0

0.2
0.4
0.6
0.8
1

PDP Size (bytes)

N
et

E
ffi
ci
en
cy

(%
) BER = 10−3

101 102
0

0.2
0.4
0.6
0.8
1

PDP Size (bytes)

BER = 10−2

Figure 2: Comparison of net bit efficiency versus PDP payload size for both
SSDV-style and AX.25 framing.

3.2.3 Framing Comparison

Both AX.25 framing and SSDV-style framing can be used. AX.25 is more
powerful as it can leverage existing packet radio infrastructure at the cost of
of larger overhead. However, if channel bit error rate (BER) is high (as is
common in longer-distance HF modes), smaller packets are more likely to be
successfully received. The lower overhead SSDV-style framing may be superior
in this case. This trade-off is explored in Figure 2. The net efficiency (percent of
each transmitted bit that will successfully transmit pixel-level image information
to the receiver) is calculated as the product of the probability that the entire
packet will be received properly and the percentage of bits in a packet that
correspond to pixel information.

Net Efficiency AX.25 =
x− 7

x+ 20
× (1− BER)8x+160 (2)

Net Efficiency SSDV-Style =
x− 7

x+ 9
× (1− BER)8x+72 (3)

(4)

where x is the total PDP length in bytes and the term x − 7 comes from the
fact that the PDP has a 7 byte header as described in 3.3.

Results from Figure 2 give guidelines for ideal PDP length. First, find the
approximate BER by estimating packet loss for an AX.25 packet with a 256
byte payload using the equation:

BER = 1− (1− L/100)1/2192 (5)

9

194

0 20 40 60 80 100
10−5

10−4

10−3

Packets Loss (%)

B
it
E
rr
o
r
R
a
te

(B
E
R
)

Figure 3: BER vs packet loss for AX.25 frames with 256 byte payloads.

where L is packet loss in percent. If the packet loss percentage is known (or
can be estimated), BER can be found using Equation 5, which is depicted by
Figure 3.

Now based on the estimated BER, you can choose the appropriate framing
style and PDP size (refering to Fig. 2):

• For low BER ≤ 10−5 Environments: Framing style does not matter that
much, and payloads should be the full 256 bytes long.

• For BER ≈ 10−4 Environments: Framing style does not matter that much,
and payloads should be 130 bytes long.

• For BER ≈ 10−3 Environments: SSDV-Style framing increases efficiency
(and speed) by ≈ 25% compared to AX.25. Payloads should be 40-50
bytes long.

• For BER ≈ 10−2 Environments: AX.25 is practically unusable; SSDV
framing will barely be usable. Payloads should be 10-11 bytes long.

3.3 PDP Specification Details

Since each packet contains information of the whole frame, each packet MUST
be the same size of every packet in an image (same number of pixels per packet).
Total packet size is determined by the framing protocol used. For example,
AX.25 packet payloads are 256 bytes by default. The payload contains the
following data transmitted in order as described by Table 3.

3.3.1 Packet Payload Preparation

Given a bit mapped image to transfer, follow the following procedures

1. Using a pseudo-random number generator (see Section 3.3.2), generate the
sequence of pixels to be transmitted.

10

195

Offset
(bits)

Name Size
(bits)

Description

0 Image ID 8 Identifies unique images within a PCSI
session. (uint8)

8 Rows 8 Number of lines in the image divided
by 16. (4096 lines max, uint8)

16 Columns 8 number of columns in the image di-
vided by 16. (4096 columns max,
uint8)

24 Packet ID 16 used as the starting point of the pseu-
dorandom pixel list. (uint16)

32 Number
of YCbCr
Pixels

8 Number of full color pixels transmitted
in this packet. (uint8)

40 Color
depth

8 Color depth encoded as (color depth/3
-1). e.g., 24bit color = 7. This only
uses 3 bits, so there are 5 bits available
for future use. (uint8)

48 YCbCr
Pixel
Data

(Number
of YCbCr
Pixels) *
(Color bit
depth)

Full color (YCbCr) pixels listed first as
a binary stream. For example, if color
is transmitted as 12-bit color, each
pixel is 12-bits long with the first 4 cor-
responding to the Y channel, the next
four corresponding to the Cb channel,
and the final 4 corresponding to the Cr
channel.

48 +
(YCbCr
Pixels) *
(Color bit
depth)

Y-only
Pixel
Data

N Black and white (Y only) pixels follow
in a binary stream of Y values encoded
as a uint with the same bit depth as a
single channel of the YCbCr pixels.

Zero
padding

Z Zero padding for byte alignment as
needed.

Table 3: PDP Specification Version 1.0.0

11

196

2. Given the number of bits available in the payload (e.g., AX.25 UI frames
have 256 bytes minus 7 bytes of image info equals 1992 bits total), the de-
sired chroma compression level, and the desired color bit depth to trans-
mit, determine the list of pixels to transmit that will be full color and
solely back and white.

(a) All packets consist of the same number of pixels (e.g., every packet
for an image has exactly 25 YCbCr pixels and 75 Y only pixels for a
total of 100 pixels. You can choose whatever numbers you want, as
long as they are the same for every packet of the image).

3. Prepare the packet payload

(a) Convert full color pixels to YCbCr per ITU-T T.8717 and black and
white only pixels to Y as per the same spec.

(b) If color bit depth is being reduced, approximate the value to be trans-
mitted using rounding. For example, the 8 bit number 200 will be
represented as the 4 bit number round(200/255*15)=12.

3.3.2 Pseudo-random Number Generation for Picking Pixels

Compressed sensing imaging requires that the measurements are uncorrelated
in the sparse domain that is used to reconstruct the image. Taking random
samples ensures this condition, however, both the transmitter and receiver need
to know which pixel values correspond to which pixels in the image. To do
this, PCSI uses a Linear Congruential Generator8 as a deterministic pseudo-
random number generator using GCC’s default coefficients (modulus = 231,
a = 1103515245, c = 12345, starting with a seed = 1). The pseudo-random
number generator is then used with the modern Fisher Yates shuffle algorithm9

to generate a random list of the pixels to be sent. See reference code for details.
This approach will allow all receivers and the transmitter to generate identical
lists of order that pixels will be transmitted. Since every packet has the same
number of pixels, the packet ID will give the receiver the starting pixel number
from which the list of pixels received in the packet can be extracted.

Pixels are indexed column-first as seen in C, not row first as is typically
done in Python. You therefore have to transpose a matrix before selecting and
assigning pixels if you are working in Python.

3.3.3 PCSI Payload base91 Encoding

If you are transmitting over channels that only allow printable ASCII text, the
entire PDP can be converted to base91 as described below. This is a combination
of APRS base91 and basE91.10 Compared to basE91, the method used in PCSI
is simpler and deterministic at the cost of slightly more overhead.

7https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion
8https://en.wikipedia.org/wiki/Linear_congruential_generator
9https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

10http://base91.sourceforge.net/

12

197

While there are 13 bits or more to convert, read in 13 bits Convert those 13
bits to two ASCII bytes using [floor(bits/91)+33] for first and [bits%91+33] for
the second byte. Next, if there are fewer than thirteen and more than seven bits
available (the end of the stream), read in and zero pad (to the right, i.e., least
significant bits) the remaining bits so that there are 13 bits total. Convert those
13 bits to two ASCII bytes using [floor(bits/91)+33] for first and [bits%91+33]
for the second byte If there are 6 or few bits remaining: Read in and zero pad
(to the right, i.e., least significant bits) the remaining bits so that there are 6
bits total. Convert those 6 bits to one ASCII byte using bits+33.

3.4 Reconstructing PCSI Images

There is no specification or standard on how to reconstruct the images. Users
can experiment with different methods and find what is appropriate. The ref-
erence implementation follows these steps:11

1. Decode all the pixel values and pixel numbers from as many packets as
have been successfully received.

2. For each color channel (Y, Cb, Cr), use OLW-QN for basis pursuit12 to find
the discrete cosine transform (DCT) coefficients that best fit the received
data and minimizes the L1 norm. This is the key to compressed sensing!

3. After finding the DCT coefficients, use the inverse DCT to generate the
color channels for the image.

4. Convert from YCbCr to RGB, and save the image.

4 Future Work

PCSI is available for use any band and KISS compatible TNC or software mo-
dem. Now that it has been demonstrated, some additional features can be
explored:

• Low-power micro-controller transmission client: PCSI transmis-
sion is computationally simple enough to be performed on low-memory
micro-controllers. High-altitude balloons would benefit from integrating
PCSI transmission with Arduino radios such as the HamShield.13

• PCSI aggregation server: Since different stations can receive different
packets, and increasing the packets increases image quality, a centralized
server can be used to aggregate packets to improve image quality. This sys-
tem would be similar to the Automatic Picture Relay Network (APRN14)

11based on http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
12https://en.wikipedia.org/wiki/Limited-memory_BFGS#OWL-QN
13https://inductivetwig.com/
14http://www.aprs.org/aprn.html

13

198

and to what is done with SSDV15 to receive images from high-altitude
balloons that move out of range of the original receiving system.

• Integrate PCSI with APRS: While transmitting entire PCSI images
over APRS channels would severely strain the network, APRS could be
leveraged to announce ongoing transmission or upcoming “ImageNets”
on non-APRS frequencies. APRS frequency objects can be transmitted
following the conventions of the Automatic Frequency Reporting System16

(AFRS) and APRS Local Frequency Info Initiative.17

15http://ssdv.habhub.org/
16http://www.aprs.org/afrs.html
17http://www.aprs.org/localinfo.html

14

199

List of Terms

Notation Meaning
AFSK Audio Frequency Shift Keying
APRS Automatic Packet Reporting System
ASCII American Standard Code for Information Interchange
AX.25 Amateur X.25
BER Bit Error Rate
CRC Cyclic Redundancy Check
CW Continuous Wave
DCC Digital Communications Conference
DCT Discrete Cosine Transform
FCS Frame Check Sequence
FEC Forward Error Correction

FX.25 Extension to AX.25 with FEC
GCC GNU Compiler Collection
GUI Graphical User Interface

HDLC High-Level Data Link Control
HF High Frequency

IDCT Inverse Discrete Cosine Transform
ITU International Telecommunication Union

JPEG Joint Photographic Experts Group
KISS Keep It Simple, [Silly]
PCSI Packet Compressed Sensing Imaging
PDP Pseudo-random Datagram Payload (PDP)

OLW-QN Orthant-Wise Limited-memory Quasi-Newton
RGB Red, Green, Blue
SSDV Slow Scan Digital Video
SSTV Slow Scan Television
TCP Transmission Control Protocol
TNC Terminal Node Controller
UDP User Datagram Protocol

UI User Interface
YCBCR Luma, blue-difference and red-difference chroma components

15

