Digital signal processing: 12S in ESP32

Anthony LE CREN, KF4GOH
f4goh@orange.fr

Abstract

How to decode and encode RTTY with an Espressif ESP32 and 12S (Inter-IC Sound)

1 Introduction

For several years | have been using an Arduino UNO (Atmega328p) to realize all kinds of applications
around the radio. Most of the time, it's very easy to generate an FSK signal using the internal PWM of
the processor added with an external low-pass filter. (see Standalone HAM modulation generator:
TAPR N°37). On the other hand, it is much more complicated to decode an FSK-type audio signal with
the same processor. Indeed, you have to apply signal processing algorithms and you realize that it is
difficult to use an FFT algorithm in an Atmega328p while having real-time decoding. Robert Marshall
(KI4MCW) explains how to decode an FSK signal with an Arduino Uno [1]. | was able to successfully
test the algorithm written by Dennis Seguine in the realization of my APRS repeater with a DRA818
[2,3].

The manufacturer Espressif is known for the ESP8266, a processor that embeds WIFI connectivity.
This integrated circuit has managed to federate a very large community of "makers", particularly around
IOT connected objects. More powerful, the ESP32 integrates more memory and bluetooth connectivity.

Main features of the ESP32:
CPU: Xtensa dual-core operating at SPI Bluatoot y) _
240 MHz link hetrot RF receive
= controller Peasban A | =
. Clock = E
Memory: 520 KiB SRAM i generator .2 B2
sDIo et Wi-Fi
Wi-Fi MAC RF
Wireless Connectivity : e Desensnd wansmit |
1% J . o
Wi-Fi: 802.11 b/ g/ n ».L Comand mem_ory Cryptographic hardware
Bluetooth: v4.2 BR/EDR and ETH { G o CRiel aceeleration
. . ——
Peripheral interfaces: R SHA RSA
12-bit SAR ADC 18 channels —_— { ROM | SRAM i sy
i PWM h k
2 x 8-bit DACs)
Temperature
4 x SZPI Sgl‘lsrﬂrur RTC
2 x I*S interfaces T
2 x |2C interfaces ———————— - uLP Recovery
3 x UART L coprocessor | memory
CAN bus 2.0 ADC : g
PWM outputs

200

2 Brief presentation of the project

>
H fidigi ver4.0.18 - f4goh

Step 1

N

ke

Fle OpMode Configue View

Logbook Help

oot [TRap [rrap [rrune |

A PC with Fldigi software is

435000.000

Fra[435000.799 DO"FIH out
cal

|uss

connected to a Yaesu ft7900

~ (]3] o

[~]
transceiver. m

Read macros from: C:\Users\anthony\fidigi.files\macros\macros.mdf

QsL

The user kb1goh sends a
message in RTTY for example: |

VIQB

IFVOWIR AUKB1GOH : QSL

gsl. ;

4] 60 M x1 |4 [W | b | norm [@][4] 884 [b|M| o=
|

[] a

¢ [Stre |rk [8Rv TR u

|RTTY [45.451170

|sin 16 de

[M[4] 3.0 [M]m]@[rac

Step 2

The RTTY frame is received by the
DRA818 module and decoded by
the ESP32.

The esp32 is configured as a WiFi
access point and web server.

The user FAGOH consults the
RTTY messages on his phone
using a WEB page.

There is no specific application to
install and no Internet connexion.

communication is bi-directional.

Frag

f4goh:hello
kbigoh:qsl

©r A 192.168.4.1/msg.ht

o571 % W0 19:42

a

/

We notice that the processor has 2
cores. Core 0 handles digital
processing and thus RTTY
decoding while core 1 handles the
main loop and the web server.

PROCESSOR

CORE 1
Task2

Task1codef) Task2code()
Embed

web server

Digital
processing

201

3 FreeRTOS

FreeRTOS is a portable, open source real-time operating system (RTOS) for microcontrollers. Created
in 2003 by Richard Barry, it is today one of the most widely used RTOS in the real-time operating
system market, including the ESP32

The advantage of using freeRTOS [4] is to be able to manage several tasks in parallel. The number of
tasks executed simultaneously and their priority are limited only by ESP32.

To assign specific parts of the code to a specific kernel, you need to create tasks. When you create a
task, you can choose in which kernel it will run, as well as its priority. Priority values start at 0, where 0
is the lowest priority. The processor will run the tasks with the highest priority first.

Tasks are pieces of code that execute something. For example, it can be flashing a LED, making
analog/digital acquisitions, measuring sensor readings, publishing these readings on a server, and so
on.

Scheduling (the program that The drawing below shows 4 tasks running in a core:
manages the different tasks is based
on the Round-Robin model with
priority management). The round- time
robin is a kind of turnstile where each
process or task that is on the turnstile Task 3 Task 2
just passes in front of the processor,
in turn and for a fixed time.

Y
N

->[Core]

Task4 | Task1

4 Inter-IC Sound

I2S (Inter-IC Sound), pronounced eye-squared-ess, is an electrical serial bus interface standard used
for connecting digital audio devices together. It is used to communicate PCM audio data between
integrated circuits ADC/DAC in an electronic device. The IS bus separates clock and serial data
signals, resulting in simpler receivers than those required for asynchronous communications systems
that need to recover the clock from the data stream.

The chronogram below shows the clock and the data signals. In the case of stereo acquisition, the right
and left channels are alternated.

SCK |
oo X XX XX XX
WORD n-1 ‘ WORD n | WORD n+1
RIGHT CHANNEL ‘ LEFT CHANNEL | RIGHT CHANNEL

202

In an ESP32, the 12S bus uses DMA (Direct Memory Access) transfer. DMA is a process in which data
flowing to and from a device is transferred directly by a suitable controller to the main memory of the
machine, without any intervention by the microprocessor except to initiate and complete the transfer.

This allows the processor to have more time to perform signal processing calculations. This is a huge
advantage over the Arduino UNO.

Sampling frequency 20480 HZ Sampling frequency
20480 HZ

= N
ADC1_CHANNEL_0 125_DAC_CHANNEL_RIGHT_EN
(GPI036) i E‘: >)DMA DSP DMA 175 (gpio 25)
FFT L
Buffer Buffer
1024 1024
bytes bytes

In order to test 12S, | injected with a function generator a 1000Hz sinusoidal signal on the input of the
ADCO (GPIO36: CH1). The processor then calculated the FFT of the signal. The result of the
magnitude is then sent to the digital to analog converter DAC(CH2). Each step of 48.8us (1/20480)
corresponds to a 20Hz step (20480/1024) in the spectrum.

Tek Exée. Décl — Filtre du bruit désactivé

A A VIR A S B VR S
N A N W NS T undamental
:—I [| [| | [| | [| [; [| [| [| [I | [frEquEncy’
..................... 90 x48.8us

SO0 Jl400.s o0 13w 123545 He[1250:05 |

The time between the DC component and the fundamental is 50 x 48.8us, so this corresponds to a
frequency of 20 x 50 = 1000Hz.

203

5 RTTY decoding

An RTTY signal is composed of two frequencies (MARK and SPACE). There is no need to perform a
full FFT. For this | used the Goertzel algorithm [5], which allows to detect the presence of a frequency in
a sequence of samples. This is an efficient method to evaluate a particular term of the discrete Fourier
transform; it requires only one multiplication and two additions per sample. The Goertzel algorithm is
obviously used twice, one for the MARK frequency and the other for the SHIFT frequency.

Sampling frequency 34905 Hz Goertzel
algorithm Sampling frequency 34905 Hz
RTTY decoder
ADC1_CHANNEL_0 O * \| 125_DAC_CHANNEL_RIGHT_EN
% » 125 = _DAC | I i
(GPIO36) 9(DMA merl ':ePwer DMA ﬂ[/ (apio 25)
43_
RTTY encoder ‘
Buffer | Buffer
256 bytes =P 256 hytes

The choice of sampling rate and buffer size is related to the RTTY baud rate (45.45 Bauds). | used the
chunk method to detect a logical one or zero level corresponding to the RTTY transmission. If 3
consecutive chunks have the same frequency, | deduce the corresponding logical level of the RTTY bit.
| can then calculate the sampling frequency:

Sampling frequency = RTTY speed x Number of chunks x buffer size.
34905 Hz = 45.45 x 3 x 256

At each change of state frequency, | count the number of consecutive previous chunks. The byte is
composed of the start bit (always 0) followed by the five data bits and two stop bits (always 1).

1,1,1,1,1,0,->6 = 5+1

Byte->DE (1107 77170 char decoded k)
0,0,1,->3

1,1,0,->3

0,0,1,->3

1,1,1,1,1,0,->6

0,0,1,->3

1,1,1,1,1,0,->6

Byte->DA (1107 71070 char decoded f)
0,1,shift!

->3
1,1,1,1,1,0,->6
0,0,1,->3

1,1,1,1,1,1,1,1,1,1,1,0,->12

Byte->F6 (1177 0770 toggle to figures)
0,0,0,0,0,1,->6

1,1,0,->3

0,0,1,->3

0,0,1,->3 1,1,0,->3
1,1,1,1,1,1,1,1,1,1,1,0,->12 = 11+1 (previous) 0,0,1,->3
0,0,1,->3 = 2+1 1,1,1,1,1,0,->6

Byte->D4 (1107 0100 char decoded 4)
0,0,1,->3
1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,,0,->21
Byte->FE (char toggle to letters)
0,0,0,0,0,1,->6

1,1,0,->3

0,0,1,->3

1,1,1,1,1,1,1,11,1,1,0,->12

Byte->F4 (1177 0700 char decoded g)
0,0,0,0,0,0,0,0,0,0,0,1,->12
1,1,1,1,1,1,1,1,1,1,1,0,->12

Byte->FO0 (char decoded o)
0,0,0,0,0,0,0,0,1,->9

1,1,0,->3

0,0,1,->3

1,1,1,1,1,1,1,1,0,->9

Byte->E8 (1170 1000 char decoded h)

204

| preferred to use 2 stop bits rather than the traditional 1.5 stop bits. This to facilitate decoding during
my first attempts. Nevertheless, | must detect the space character in order to synchronize the decoder
and not to display random characters.

When sending an RTTY frame, | always start by sending a space character first. This is obviously

useless when using 1.5 stop bits.

6 The web server

The WEB server is composed of four HTML and JavaScript pages. A home page allowing you to
choose your callsign and an option to configure the DRA818 and the MARK / SHIFT frequency.

The HTML page that manages the sending and receiving of messages makes AJAX requests to the
server to update the reception area. This reception area is refreshed every two seconds. Sent and

received messages are also displayed on the mini OLED screen.

Main menu

DRA 818 configuration

Send and receive messages

Free Zall 52 % N 19:41

€ ® 192.168.4.1 ®

(!g))

Your name/callsign

f4gori

DRA 818
Dra 818 enable V!

Mark (Hz)
818
Shift (Hz)

170

Center : 903 Hz

Configuration
DRA 818 model

DRA818U
Bandwidth selection

25KHz © 12.5KHz
Frequency

435.0000

Levels
Volume 8

Squelch 4

Filters

Pre/de-emphasis | |
Highpass | |
Lowpass | |

Update

-

Free = all51 %m0 19:42

0 A 192.1684.1/msghtt &

f4goh:hello
kb1goh:qsl

Send a message :

azerrtyditdp
gs df gh jk I m
4 wxcvbn' @
7123 © .

A\ O O

205

7 Conclusion

Through these experimentations around the esp32 and the 12S bus, my main goal is achieved. It is
possible to decode an FSK audio signal while managing a WEB page in the same processor. This
reduces the hardware, but the time spent to develop the software increases. It would be interesting to
switch to APRS decoding. | will end by pointing out a very interesting site, that of HA2NON which gives
examples of decoding under PC using the JAVA language [6].

[1] https://sites.google.com/site/kidmcw/Home/arduino-tnc

[2] https://hamprojects.wordpress.com/2015/07/01/afsk-dra818-aprs-tracker/

[3] https://github.com/f4goh/TNC

[4] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html

[5] https://en.wikipedia.org/wiki/Goertzel algorithm

[6] http://dp.nonoo.hu/projects/ham-dsp-tutorial/

206

