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Abstract—We investigate the performance of main frequency 

estimation methods for a single-component complex sinusoid 

under complex additive white Gaussian noise (AWGN) as well as 

phase noise (PN). Two methods are under test: Maximum 

Likelihood (ML) method using Fast Fourier Transform (FFT), 

and the autocorrelation method (Corr). Simulation results 

showed that FFT-method has superior performance as compared 

to the Corr-method in the presence of additive white Gaussian 

noise (affecting the amplitude) and phase noise, with almost 20dB 

difference. 
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I. INTRODUCTION 

The frequency estimation (IF) of a complex sinusoidal 
signal in white Gaussian noise is one of the major problems in 
the literature. This is so because IF has been applied widely in 
many areas such as radar, sonar, communications and image 
analysis [1-5]. There is a variety of approaches to the 
frequency and phase estimation problem, with differences in 
performance as regards frequency estimation accuracy and 
computational complexity [5]. In many applications, it is 
necessary to detect the frequency of a single tone in a noisy 
environment. Taking the Discrete Fourier Transform (DFT) 
using FFT algorithm of the collected samples is the most 
common method of making such a frequency estimate. 
Practical limitations like the computational complexity can 
restrict the number of samples under processing (hence, the 
amount of signal information), a factor that will restrict the 
resolution of the estimate provided by the DFT [6]. The 
maximum likelihood estimator (MLE) to estimate the 
frequency of a sinusoid damaged by additive Gaussian noise 
was thoroughly studied by Rife and Boorstyn [7]. Quinn [8] 
developed a simple and efficient method to estimate the 
frequency of a single-tone sinusoidal signal based on the three 
samples around the DFT maximum (peak). A similar method 
was developed by Grandke [9]; this method uses the DFT 
maximum point (in the frequency domain) along with only one 
adjacent frequency. Both of the above methods are efficient in 
frequency estimation in terms of good performance (accuracy 
of frequency estimation) at higher noise powers (i.e., low 
SNRs that may reach 0dB). However, neither of these two 
methods can directly give a good magnitude estimate, also, 
both methods require division operation [6]. 

In this paper we will estimate the frequency of a single-tone 
sinusoid under AWGN and phase noise (PN) using two most 
popular methods: MLE method through using Fourier 
Transform (FT) (calculated by Fast Fourier Transform 
algorithm, FFT), and the Correlation method (Corr). The latter 
has been traditionally preferred to MLE for being 
computationally less intensive than FFT. Frequency estimation 
based on Fourier transformation is explained in Section 2, 
while in Section 3 we explain the autocorrelation method. 
Section 4 provides simulation results and performance 
comparison between the two methods. 

II. FREQUENCY ESTIMATION BASED ON FOURIER 

TRANSFORM 

Let the signal to be a single-tone sinusoid as follows: 

                                                                          
where,   is the signal amplitude,    is the frequency of the 

signal,     is the initial phase and      is an additive noise 
process. Noise is assumed to be Gaussian white noise process 
with    ]=0 (  being the expectation functional) and var [ ] = 
σ2. 

Assuming that all the above parameters are unknown, we 
try to get an estimate for the frequency      as  ̂. The estimate 
should be as accurate as possible, also, it should not be 
computationally intensive [10].  

Two important quantities associated with any estimate is 
the bias,    ̂]     ̂]   , and the variance, given by 

v r  ̂]    ( ̂     ̂ )
 
].  

For unbiased estimators (bias=0), an important 
performance measure is the Cramér-Rao bound (CRLB), which 
represents the minimum possible variance for the unbiased 
estimator when noise effect decreases or the Signal-to-Noise 
Ratio (SNR) increases. The CRLB of the unbiased frequency 
estimator has been formulated as follows [11]:  

     
 

SNR

 

       
                                                               

where N is the number of signal samples and SNR is the 
signal - to - noise ratio (        )).  

We know that FT method estimates the frequency by the 
peak of the Fourier Spectrum      of the sinusoidal signal 
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    , computed from the sampled signal      by the DFT 

as      
 

√ 
∑           

    

 
    

   .  

However, the actual frequency of a signal may not fall on 
one of the above frequencies of the DFT bins, hence; we use 
the magnitudes of the nearby bins to determine the actual 
signal frequency through the process of interpolation. There are 
several interpolation methods as follows. 

A. Quadratic Interpolation: 

This method finds a quadratic fit                    in 
the neighborhood of the maximum   m x{    }  with the three 
points [5]: 

(   ,    |    |),  
( ,    |  |), 
and (   ,    |    |  , 

where      {         ]}   index of the absolute 
maximum magnitude of the DFT, which refers to the actual 
frequency        ,    being the sampling frequency. 

Now the actual maximum given by the quadratic formula 
above will be at the point           as follows: 

          
where                            ⁄ ] .  

The estimated frequency is    
   

 
  

The Barycentric method is similar, with          
where                       ⁄  . 

B. Quinn's First Estimator [8]: 

Taking the three DFT points: 

(   ,                ),  

( ,              ),  

and (   ,                 ,  
we perform the following calculations: 

    
    

  

                 ⁄  ; 

           ⁄    
                 ⁄   ; 

          ⁄    
If         nd        then ,     ,   else ,       
Now            

C.  Quinn's Second Estimator [12]: 

Using the above three points with other quantities, we have: 

  
   

 
            ;             

where        

 

 
  (        ) 

√ 

  
        √

 

 
 

    √
 

 

. 

Estimating the frequency             using Quinn's 
second estimator has the least RMS error; however, in our 
simulation we used the Quadratic Method with frequency 
compensation: 

  
       

              
                                                                                                                                                                             

 

III. FREQUENCY ESTIMATION BASED ON 

AUTOCORRELATION 

The autocorrelation algorithms are to extract the frequency 
from the ph se of the  v il ble sign l’s  utocorrel tion with 
fixed lags.  

The periodogram-based estimators use the Discrete Fourier 
Transform (DFT) for a coarse search and an interpolation 
technique for a fine search [13]. In correlation-based single-
tone frequency estimation, consider the single-tone model as 
per Equation (1). For correlation-based estimators, an estimate 
of the frequency is obtained by the information of one or 
several estimated entries of the auto-correlation sequence of 
      

                    ]   | |                          

where (    ] ) denotes statistical expectation,      is the 

Kronecker delta,     is the noise variance as defined in 
Equation (1), and     denotes complex conjugation. Note that 
since noise is uncorrelated with itself, its autocorrelation is a 
delta function (exists at lag     only).  

We can find the autocorrelation sequence  {    }  from the 
data sequence as follows: 

      
 

   
∑               

                                                  

 
Note that            .  

From Equation (5), we may have close information about 
the frequency    from the phase angle of  {    }, that is,  if we 
exclude the case       in order not to interfere with the noise 
effect, we have: 

     ph se      ]   〈 mod    ]〉 
     ph se      ]                                             

The integer   satisfies       . As we want positive 
results for frequency, the angle and mod    ]  operation are 
restricted to the interv l [0,2π). Also, only positive v lues of   
are considered in our simulations.   

The first possible frequency estimate from Equation (7) is 
obtained by putting    ; hence, if we choose the first 
autocorrelation sample at    , we have: 

   ph se      ] 
This estimator is known as the minimal order linear 

predictor [14]. It is also a special case of the Pisarenko 
harmonic decomposer frequency estimator [15]. It is shown 
that the performance of this linear predictor can be improved 
by using a different correlation lag [16]. In [17] - [18], it was 
shown that the estimator based on a single correlation 
coefficient can be made more efficient.  

A disadvantage with the above estimators (other than the 
fundamental estimator) is the ambiguity to the frequency 
estimate [19], [20]. It is shown in [21] that the frequency 
ambiguity could be resolved using two correlations with 
relatively prime correlation lags; this is further explained in 
[22], [23]. 
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IV. FREQUENCY ESTIMATION UNDER GAUSSIAN AND 

PHASE NOISE 

The works of frequency estimation in the literature have 
tested the above algorithms only under additive Gaussian noise 
(AWGN), however, no test has been performed under phase 
noise (PN). 

The main source of noise in electronic and communication 
systems is the thermal noise. This noise process (which is 
normally additive) is generated due to the random thermal 
agitation of free electrons as an electrical current passes 
through a conductor. This type of noise is white, i.e. it is 
composed of all frequencies. Another form of noise affecting 
communication systems is called phase noise [24]. This noise 
is created during the process of combination and recombination 
of charge carriers inside the molecular structure of the 
semiconductor. Hence, the sinusoidal signal with a 
fundamental frequency     is disturbed by noise in the phase 
part, leading to a slight fluctuation in the instantaneous 
frequency. This is so because the instantaneous frequency      
and phase      are related by the instantaneous formula [4]: 

     
 

  

     

  
                                                                              

In this work, we consider phase noise (PN) affecting the 
phase of a single-tone sinusoid as follows: 

        cos(            )                                       

where   is the signal amplitude,     is angler frequency, 
     Initial phase,      is the phase noise and      is the 
additive white Gaussian noise.  This is just an extension to 
Equation (1) above. The above parameters are assumed to be 
unknown. We formulated PN as Gaussian noise added to the 
phase of the signal. This is the simplest model for phase noise. 

V. SIMULATION RESULTS 

We simulated the above algorithms with signal model with 
AWGN and PN as per Equation (8) using MATLAB. The 
simulated signal has time length      s, sampling interval  
         ,            , and a number of samples   

 
 

  
] . The signal amplitude is     volt,     is angler 

frequency          , where        Hz.  We modeled PN 
as zero-mean Gaussian noise. Monte Carlo simulations were 
performed with       realizations. We used the quadratic 
frequency compensation as per Equation (4): 

         with                            ⁄ ] , 

and estimated frequency     
   

 
  

The signal-to-noise ratio (SNR) is still defined as before, 
i.e., using the AWGN power only. This is so because the phase 
noise power is affecting the phase only but not the amplitude of 
the signal. 

Finally, we calculate the relative squared-error under each 
SNR and PN power as follows: 

  |           ⁄ |  
As for the frequency estimated by correlation, we do not 

calculate all the correlation coefficients of the signal to get the 
estimate, but only the 2nd coefficient was considered. Note that 
we used Hilbert transformation (HT) to get the analytic signal 

     associated with the original signal      before estimation.  
This is to remove the negative part of the signal spectrum 
    , where: 

                  ] 

      ]   
 

  
]        ] 

noting that    denotes time-convolution, and   denotes HT 
[25]. Hence: 

               sgn   ]         sgn   ] 
 

        {
         

     
} 

Therefore, using HT will not affect the frequency 
estimation. 

After estimation, we calculate relative squared-error for 
each SNR as follows:   

  |
       

  
|
 

 

Finally, we draw our results as shown in Figures (1) and 
(2). 

Note that taking more correlation coefficients (hence, more 
estimations for the frequency) will give more accurate results, 
but this is not recommended for real-time applications. 

Figure (1) shows the estimated frequency versus SNR using 
interpolated FT peak and correlation methods for various 
powers of phase noise (PN). Numbers 1, 2, 3 correspond to PN 
powers of -50, 1, 5 dB, respectively. Note that FT hold in a 
high SNR less -30dB, as for to the correlation method holds to 
-15dB , It is clear that PN does not affect CRB, as all curves 
converge to the same asymptote for large SNR. For all PN 
powers, FT peak outperforms correlation by almost 15 dB. 
Also, it is clear that FT and correlation have the same CRB [as 
per Equation (2)], since both estimates have the same 
asymptote. 

Figure (2) shows the frequency estimation mean-squared 
error (MSE) versus SNR using interpolated FT peak and 
correlation methods for various powers of phase noise (PN). 
Numbers 1, 2, 3 correspond to PN powers of -50, 1, 5 dB, 
respectively. It is clear that FT peak is more robust under very 
low SNR; however, it is more computationally expensive. This 
is not a surprise because correlation is highly dependent on 
phase. 

VI. CONCLUSIONS 

We tested two popular frequency estimation algorithms, 
MLE through FFT and Correlation, using complex single-tone 
sinusoid affected by additive Gaussian and phase noise. Results 
of implementing these methods in MATLAB helped in 
comparing between them as follows: 

 Fourier Transform (FT) approach is more efficient than 
the correlation approach (Corr) for frequency 
estimation. This is so because FT can work under low 
SNRs (as low as -30 dB), while the lowest SNR for the 
correlation method is (-15dB), hence there is about (-
15dB) difference between the two approaches. 
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 FT outperforms Corr under phase noise, as it gives 
better    estimation (lower error) at higher PN power 
values. This is so because Corr method is dependent on 
phase, so it will be more sensitive to phase noise. 

 It is clear that PN does not affect CRB, as all error 
curves converge to the same asymptote for large SNR. 
Hence, both FT and Corr approaches have the same 
CRB.  

 Despite the superiority of FT in frequency estimation 
as compared with Corr, the FT approach is 
computationally expensive. This so because FT 
requires the whole signal and estimates the frequency 
from the peak of FT, while in Corr approach we can 
take one correlation coefficient to estimate the 
frequency. 
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Fig. 1. Estimated frequency versus SNR using interpolated FT peak and correlation methods for various powers of phase noise (PN). Numbers 1, 2, 3 correspond 

to PN powers of -50 (no noise), 1, 5 dB, respectively. Note that SNR is only considered for AWGN. 

 

 

 

-50 -40 -30 -20 -10 0 10
10

1

10
2

10
3

 SNR, dB

 E
s
ti

m
a
te

d
 F

re
q

u
e
n

c
y

 

 

FT1

Corr1

FT2

Corr2

FT3

Corr3



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 5, No. 9, 2014 

106 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Frequency estimation mean-squared error (MSE) versus SNR using interpolated FT peak and correlation methods for various powers of phase noise (PN). 

Numbers 1, 2, 3 correspond to PN powers of -50, 1, 5 dB, respectively. It is clear that FT peak is more robust under very low SNR. 
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