
KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 1

KS12 Modem Technical Description

Project Description

The 1200 bps KISS modem software project was contrived from a need to get up to
speed programming and using the TAPR/AMSAT DSP-93 platform. The practicality of
a 1200 bps modem is questionable due to the availability of cheap TNC’s and limited
1200 bps packet activity nowadays but this project has served as a useful learning tool
and could be used for the basis of other more useful projects.

Some of the modem features:

• Bell 202 1200 Baud AFSK tone detection and generation.
• Performs HDLC Frame assembly and disassembly.
• Implements open squelch carrier detection.
• Communication with modem uses KISS protocol over the DSP-93 UART link.

By using some form of NOS(Network Operating System) on a PC, one does not need to
use a TNC in order to connect to AX25 bbs’s or run TCP/IP. All the high level protocol
is implemented in the NOS software rather than inside a dedicated TNC. The
communications between the PC and the DSP-93 take place over a standard RS-232
asynchronous serial line using a SLIP(Serial Line IP) derivative protocol commonly
called KISS(“Keep It Simple, Stupid”). This protocol specification is available widely on
bbs’s and the Internet so will not be delved into here.

Hardware Resources

The DSP-93 platform consists of a 40 MHz Texas Instruments TMC320C25 16 bit DSP
chip, surrounded by 32K words of program memory and 32K words of data RAM. An
analog interface board contains a TI TLC32044 14 bit A/D, D/A converter, a
asynchronous UART chip, and various I/O ports for radio control and LED display
control. A software controllable gain block is provided for adjusting the receiver input
level to the A/D converter. A monitor EPROM is used to provide a downloader function
as well as storing built in modem software and test applications. Programs can be
downloaded into the DSP-93 using utility programs that run on a PC.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 2

Software Design Method

The software for the KS12 modem was designed in a modular fashion using “C”
language blocks to describe each function. Once the code blocks were defined, then
the C320-25 assembly code was hand assembled using the “C” code blocks as a
reference. This may seem cumbersome but designing in assembly language can get
very complicated and confusing in a hurry even with generous comments. By designing
the code in a higher level language, one doesn’t get bogged down in implementation
details until the design is ironed out. This may take a little longer to get to the debug
stage, but reduces the number of bugs once you get there, especially as the program
gets more complicated.

The software source was also broken into several parts mainly to ease in editing. This
sort of implements a “poor man’s” linking assembler in that one can edit and debug
using just the file associated with a general task instead of having to search through
one large cumbersome source file. When assembling of course, everything has to be
re-assembled.

Data queues(FIFO, Circular, or “rubber band” buffers) are used throughout to reduce
the timing constrains on the software and allow even distribution of processing time.

The only time critical operation is the actual A/D and D/A sampling operation which is
performed by the TLC32044 CODEC chip in conjunction with the DSP hardware. Since
the data is taken from or put into the data sample queues at precise time intervals, the
rest of the software is not constrained to operate on the data in real time. This allows
the software to perform periodic operations longer than the sample time interval as long
as the average processing time does not exceed the sample time interval.

Another software method used was the use of indirect function calls to implement state
machines which are of use at various places in the code. Basically the address of the
function to call is placed in a RAM variable. An indirect call using that RAM variable
results in execution of the specified function. Within that function, a “NEXT STATE”
can be specified by simply loading the RAM variable with the address of the next state
function. In this manner, complicated state machines can be implemented fairly easily.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 3

The software is broken into eight files for easier manipulation:

• KS12MAIN.ASM This is the main entry file and is the one that is specified for
assembling as it has all the include references for the auxiliary files. It contains all
the Constant definitions, variable allocations, hardware and software initialization,
interrupt service routines, and low level bit twiddling functions. The main code
service loop also resides here which calls all the other modules in a round robin
fashion to service all the various tasks of the modem.

• KS12DATA.TBL This file contains various constant data tables used throughout
the modem. A SIN table, a CRC table, FIF coefficients , and various lookup tables
are contained here.

• KS12AIN.ASM This file contains all the routines that service the A/D input samples
as they arrive and demodulate, and decode the HDLC data into raw data bytes that
are sent to the KS12HIN module.

• KS12AOUT.ASM This file contains all the routines that create the Bell 202 AFSK
tones in the proper NRZI HDLC sequence from an input byte of data that comes
from the KS12HOUT module. The D/A output samples are generated here.

• KS12HIN.ASM This file contains all the routines that take the raw data bytes from
the KS12AIN module and generate packets of data.

• KS12HOUT.ASM This file contains all the routines that take the data packets from
the KS12KIN module and generates HDLC data bytes that are sent to the
KS12AOUT module.

• KS12KIN.ASM This file contains all the routines that service the KISS formatted
input bytes as they arrive from the DSP-93 UART and creates data packets for the
KS12HOUT module.

• KS12KOUT.ASM This file contains all the routines that generate the KISS
formatted output data from the data packets as they are created by the KS12HIN
module.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 4

KS12AIN KS12AOUT

KS12KINKS12KOUT

KS12HIN KS12HOUT

A/D Input D/A Output

KISS Data
OUTPUT

KISS Data
Input

Input
Sample

Que

Output
Sample

Que

KS12MAIN
KISS

Out QUE
KISS In

Que

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 5

Software Descriptions

The software begins executing after being downloaded by first initializing the hardware
resources on the DSP-93. The TLC32044 AIO chip is initialized to run at a sample rate
of 10893 sample per second. The 16C550 UART chip is initialized to 9600 bps. This is
the KISS interface rate(It can be changed by recompiling with a different constant). The
onboard timer of the TMS320C25 chip is set to interrupt every 5 milliseconds. This is
used as a general purpose timer for some of the initialization routines, LED display, and
transmitter timing functions. Several initialization routines are called to initialize various
variables used by each module. After initialization, the interrupts are enabled, and the
main service loop is entered in which all seven software modules are called in a loop
continuously.

First the AIO interrupt service routine will be described. It’s function is to send a new
sample from the Sample_Que out the D/A PORT and store a new A/D sample into the
Sample_Que. Since the A/D and D/A are run at the same sample rate, only one
interrupt service routine is used for both. Also since one word is removed and one word
is placed in the Sample_Que at every sample time, only 3 pointers are need to maintain
the Sample_Que.
void RxIntService(){
 Save_Context();
 DXR = Sample_Que[AR6]; // write D/A from Sample_Que
 Sample_Que[AR6++] = DRR; // read A/D into Sample_Que
 if(AR6>Sample_Que+SAMPQUESIZE-1) // deal with wrap around
 AR6 = Sample_Que;
 Restore_Context();
}

Three Auxiliary registers(AR6,AR5,AR4) are used as pointers to the Sample_Que. AR3
is used as a software stack pointer to save and restore processor context since the
320C25 doesn’t save anything except the return address during interrupts.

A/D data can be removed from the Sample_Que as long as AR5 != AR6.
D/A data can be placed in the Sample_Que as long as AR4 != AR5.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 6

KS12AIN.ASM Module

The block diagram below shows the general operation of this module. A/D samples are
pulled out of the Sample_Que and passed through a level detector. This block just
sees if any samples are above some peak threshold and flashes a front panel LED.
This is useful in setting the receive audio level. Next the data is passed through a
Band Pass FIR filter that is wide enough to pass the AFSK signal.

LP FilterBP Filter

Delay
π/2

Data Slicer

DATA CLOCK
GENERATOR

CLOCK
ERROR

CALCULATOR

Edge
Detector

CARRIER
DETECT
LOGIC

DATA
Processing

SAMPLER

Level
Detector

DAT
Out

DATA
Input

Carrier
Detect

-

The 50 bandpass filter coefficients were determined using a program called “PC-DSP”
which takes filter parameters and creates a coefficient table as well as performs
analysis on the filter. Below is the generated magnitude plot of the filter. The
frequency is normalized to the sample frequency.(multiply by the sample frequency to
get the actual frequency points)

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 7

Delay Line FSK Demodulator Derivation
After passing through the band pass filter, a delay line FSK demodulator is used to
detect the tones from the incoming signal. The basic idea of the demodulator is to
multiply the incoming signal by a negative delayed(π/2 radians) version of itself.
Passing this signal through a low pass filter to remove a 2X frequency component
results in a signal whose sign is the digital data(1 or 0).

Where ωc = carrier frequency = 2π1700 rad/sec and δω = 2π500 rad/sec for Bell 202
tone frequencies.

x t tc() cos()= ±ω δω where x(t) is the binary modulated input signal

x t tc() cos[()()]− = ± −τ ω δ τω where x(t-τ) = τ delayed version of x(t)

Multiplying together yields z(t)

z(t) = x(t)x(t-τ)

z t t

z t

c c c

c c

() cos[() ()] cos[()]

/

() cos(/) sin() sin()

= ± − ± + ±
=

= ± = ± = ±

2

2 2

2

ω δ ω δ τ ω δ τ
ω τ π ω

π δ τ δ τ δ

ω ω ω

ω ω ω

If let and the frequency component is lowpass filtered out , then

For this modem:

 ωcτ = π/2 since ωc = 2πfc so τ = 1

4 fc
 = 147.0588µsec

The problem now is how to delay 147.0588µsec when the sample period is fixed at
1/10893= 91.802µsec. A delay of 1.6019 sample periods is needed. By delaying one
sample that leaves a need to delay .6019 of a sample period. The answer is to
implement a single zero filter of the form

Y(n) = X(n) + BX(n-1)

X(n) +

B

Y(n)

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 8

The transform of this filter is:

H(z) = 1 + Bz-1

First find the frequency response of the filter by letting z = ejω

where ω = 2πFc/Fs and Fc is carrier frequency and Fs is the sample frequency

H(ω) = 1 + B e-jω

since e-jω = cos(ω) - jsin(ω)

H(ω) = 1 + Bcos(ω) - jBsin(ω)

The phase response of this filter is

φ(ω) = arctan(- Bsin(ω) / (1 + Bcos(ω)))

the group delay is the derivative of the phase response so:

τ ω
ω ω

ω
ω

= − = − −
+

d

d

d

d

B

B

Φ()
(arctan

sin()

cos

where τ = delay expressed in terms of sample delays.

Going through the gory details yields a solution for the value B given a frequency ω and

a desired delay τ.

B = − ± − + −
−

() cos() () cos () ()

()

2 1 1 2 4 1

2 1

2 2τ ω τ ω τ τ
τ

where:
ω = 2πFc/Fs (Fc is carrier frequency and Fs is the sample frequency) and
τ = desired group delay in fraction of sample time.

For this modem, Fs = 10893, Fc=1700, and the desired fractional delay is .6019

Solving for B gives:

B=1.380287
A “C” program to calculate this is given below:

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 9

/*==*/
/* F R A C T P H Z . C */
/* Program to calculate fractional phase delay coefficient for one stage */
/* zero filter given sample freq and input frequency. */
/*==*/
/*--*/
/*-------------------------> I N C L U D E S <------------------------------*/
/*--*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#define PI 3.14159
double Fs, Fi;
double Beta, D, A;
double w;
void main(void);

void main(void)
{
double Num, Den, sqrtval;
 printf("\nEnter Fractional sample delay desired(0-.999) ->");
 scanf("%lf", &D);
 printf("\nEnter Input frequency in Hz ->");
 scanf("%lf", &Fi);
 printf("\nEnter Sample frequency in Hz ->");
 scanf("%lf", &Fs);

 printf("\n Desired Delay=%lf ",D);
 printf("\n Desired Fin=%lf ",Fi);
 printf("\n Desired Fsamp=%lf ",Fs);

 w = (Fi/Fs)*2.0*PI;
 Den = 2.0*(1.0-D);
 sqrtval = (1.0-2.0*D)*(1.0-2.0*D)*cos(w)*cos(w) + 4.0*D*(1.0-D);
 if(sqrtval >= 0.0){
 Num = ((2.0*D-1.0) * cos(w)) - sqrt(sqrtval);
 Beta = Num/Den;
 printf("\n Beta1=%lf ",Beta);
 A = sqrt((1.0+Beta*cos(w))*(1.0+Beta*cos(w)) +

Beta*Beta*sin(w)*sin(w));
 printf("\n Gain=%lf ",A);
 Num = ((2.0*D-1.0) * cos(w)) + sqrt(sqrtval);
 Beta = Num/Den;
 printf("\n Beta2=%lf ",Beta);
 A = sqrt((1.0+Beta*cos(w))*(1.0+Beta*cos(w)) +

Beta*Beta*sin(w)*sin(w));
 printf("\n Gain=%lf ",A);
 }
 else
 printf("Improper input values\n");

exit(0);
}
/*==================== F R A C T P H Z . C ==========================*/

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 10

Program output:
Desired Delay=0.601900
Desired Fin=1700.000000
Desired Fsamp=10893.000000
Beta1=-1.095375
Gain=0.990250
Beta2=1.380287
Gain=2.107505

Putting all this together yields to following implementation of the phase delay FSK
demodulator:

A/D
Input

+

1.3803

Binary
Output

BP
Filter

LP
Filter

Data
Slicer

-

The low pass filter is a 32 tap FIR filter that is needed to remove the 2X frequency
components generated by the multiplication process. It was designed using “PC-DSP”.
Below is the generated magnitude plot of the filter. The frequency is normalized to the
sample frequency.(multiply by the sample frequency to get the actual frequency points)

The sign of the LP filter output is the recovered binary data stream which now can be
further processed.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 11

NRZI FORMAT
The binary data stream is encoded in the following manner:

The raw data to and from the modem is encoded in NRZI format (Non Return to Zero
Inverted). NRZI data basically is a ’1’ if the present bit is the same as the previous bit
and ’0’ if the present bit changed from the previous bit.

Example data stream:

raw recv data = 0 1 0 1 0 1 1 1 1 0 1 0 0 0
actual data = x 0 0 0 0 0 1 1 1 0 0 0 1 1

Whenever the input data changes, the actual data is a zero. If the input data is the
same, then the actual data is a one.

The NRZI data provides an interesting feature in that it really doesn’t matter what the
polarity of the incoming data bits is since the data comes from the changes in polarity.

Example of same data stream only inverted:

raw recv data = 1 0 1 0 1 0 0 0 0 1 0 1 1 1
actual data = x 0 0 0 0 0 1 1 1 0 0 0 1 1

Note the received data is the same.

ZERO BIT INSERTION
Since there is no clock associated with this data stream, the bit positions need to be
extracted from the data itself. One way is to look at the time when data transitions
occur then extrapolate where the ideal center of the bit should be. One problem is
when a long stream of zeros or ones occurs in the incoming data. Since there are no
transitions, it would be hard to determine the bit positions. The HDLC format does what
is called zero bit insertion (or bit stuffing) to insure that transitions in the NRZI data
stream occur frequently enough to be able to determine bit position.

Bit stuffing basically limits the number of contiguous ones to 5 bits. If 5 one bits occur in
a row, an extra zero is inserted into the data stream. Note we are only concerned with
ones because consecutive zeros in the data stream get converted to data transitions
due to the NRZI encoding. Long strings of data zeros create alternating ones and zeros
due to the NRZI format in the outgoing data stream and so are not a problem.

Example of bit stuffing (transmitting data):

data to be sent = 0 1 1 1 1 1 1 1 1 0 0 0
bitstuffed data = 0 1 1 1 1 1 0 1 1 1 0 0 0
 inserted zero bit^

NRZI data sent = 0 0 0 0 0 0 1 1 1 1 0 1 0
 or
NRZI data sent = 1 1 1 1 1 1 0 0 0 0 1 0 1

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 12

FLAG BYTE
Now that we have a stream of data with lots of transitions to determine the bit positions,
how does one find the start and end of a string of data? HDLC provides what is called
a flag character which is unique in that it cannot occur anywhere in the regular data
stream. A flag byte is sent by sending a zero followed by 6 ones followed by another
zero(7Eh). This byte is an exception to the 5 ones in a row bitstuffing rule and is why it
can not occur in the normal data stream.

Each Frame(packet) of data starts with one(or more) flag bytes and after all the data is
sent, one(or more) flags bytes is sent. In this way, it is possible to determine the
beginning and end of each packet of data. If the decoder ever receives a zero followed
by 6 ones followed by another zero(7Eh), then the decoder knows that a new frame is
starting.(or is finished if data was being received prior to the flag)

Multiple Flags can and usually are sent at the beginning and/or end of a packet to give
the decoder time to determine the center of the incoming data bits before the actual
data starts.

 FRAME(packet) STRUCTURE

| flag | flag | data stream | flag | flag |

flag byte = 0 1 1 1 1 1 1 0

example of a string of flags:
 flag flag flag
multiple flag bytes = 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

NRZI flag bytes = 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
 or
NRZI flag bytes = 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

All the data bytes are composed of 8 bit bytes that are transmitted least significant bit
first. (the last 16 bits is a CRC word which is transmitted msbit first)

Clock Recovery

The first thing that must be done to recover the data is recover the clock position for
sampling the incoming data stream. This is done by implementing a free running
1200bps sample clock and phase locking it to the bit center position using the time data
edge transitions occur to shift the sample clock phase until the data sampling occurs
half a sample clock from any edge.

A 16 bit phase accumulator(Recv_Phz_Acc) is used to generate the sample clock. The
phase increment value is chosen so that the word rolls over at a 1200 bps rate. The
increment value (INC1200) that must be added every sample time is:

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 13

INC
Fout

Fs
1200

2 1200 2
10893

16 16

= =() ()
 = 7220

+INC1200 Recv_Phz_Acc

Sample
Frequency

Clock
Position

Bits 15-12

Bit 15

The upper 4 bits of the Recv_Phz_Acc are used determine clock position. It divides
each bit time into 16 time slots. The actual data sampling occurs when these four bits
are ZERO. (Actually when the counter rolls over from a negative to positive number.
Due to the increment rate, some values may occur twice so it is better to just look at the
rollover condition)

The routine Phz_Lock() is called at every data transition time. Since the center
sampling point was chosen to be count 0x0 (upper four bits of Recv_Phz_Acc) the data
edges should occur ideally halfway between count 0x0 and 0xF. By the use of a lookup
table, indexed into by an average value of Recv_Phz_Acc, an error value can be
determined based on the actual count at which an edge occurred. This error value is
added to Recv_Phz_Acc in order to shift the sample position into the correct bit
position.

Another function that can be obtained from this clock position error is whether a valid
input signal is being received or just receiver noise. If noise is being received, the data
edge positions will occur randomly and the resulting position error will also be random.
By using another lookup table and an integrator counter(DCD_Counter), a carrier detect
function can be implemented. If the input signal is valid, the clock position should be
confined to a narrow range of values in the middle of the bit. The lookup table values
are all positive in this region and are added to the DCD_Counter. When the
DCD_Counter reaches a threshold limit, valid carrier detect is asserted and data
decoding can begin. If noise is received, edge positions are distributed over the entire
0x0 to 0xF range. The lookup table has negative entries outside the nominal clock
position range and so when added to the DCD_Counter, will cause it to decrement to

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 14

ZERO and turn off the carrier detect state. DCD_Counter is clamped to ZERO and a
maximum count to prevent under and over flow.
Two separate lookup tables are used to determine carrier presence. A fast acting one
is used before a valid signal is found. Once a carrier detect is asserted, a slower acting
one is applied to help ride through noise bursts.

A timeout timer DCD_OneShot is loaded on every data edge. It is decremented at
every sample time. If this timer ever decrements to ZERO, then the carrier detect is
turned off. This is used to prevent the case where a valid carrier detect is asserted and
then no more data edges are detected(such as if a squelched receiver is used or a
unmodulated signal is received). Since no edges are occurring the normal carrier
detect counter never gets serviced and the carrier detect would always be asserted.

Recv_Phz_Acc

Carrier
Detect

Carrier Detect
LOOKUP

TABLE

DCD_Counter

+

Phase Lock
LOOKUP

TABLE

+

DCD_OneShot
Timer

Edge
Detection

Bits 15-12

The last function in KS12AIN.ASM to be discussed is the routine Process_Inbits() which
is called at every data sample time to assemble the incoming binary data stream into
bytes of data and flag information that will be passed along to another module for
further processing. The “C” code is shown below and basically converts the NRZI data
into data and flag bytes removing any “bitstuffed” zero’s along the way. The variable
FLAG.xxx is a reference to a BOOLEAN bit variable.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 15

void Process_Inbits(Flags)
 if(Flags.CARRIERDET){ // if carrier present
 if(Flags.RXLASTBIT == Flags.INPUTBIT){
 if(RX_OnesCounter < 5){ // Input Bit is same as last so is ONE
 RX_OnesCounter++; // shift in valid ONE data bit
 RX_ByteRegister >>= 1;
 RX_ByteRegister |= 80h;
 if(++RX_BitCounter >= BITSINBYTE){ // got a whole byte?
 RX_BitCounter = 0;
 RX_NewByte = RX_ByteRegister;
 Flags.NEWBYTERDY = TRUE;
 }
 }
 else{
 if(RX_OnesCounter < MAX_ONES){ // clamp ones_counter to MAX
 RX_OnesCounter++;
 }
 }
 }
 else{ // Input bit changed polarity so is a ZERO data bit
 Flags.RXLASTBIT = Flags.INPUTBIT;
 if(RX_OnesCounter < 5){ // is not a flag or stuffed bit yet
 RX_ByteRegister >>= 1; // shift in a zero
 RX_OnesCounter = 0;
 if(++RX_BitCounter >= BITSINBYTE){ // got a whole byte?
 RX_BitCounter = 0;
 RX_NewByte = RX_ByteRegister;
 Flags.NEWBYTERDY = TRUE;
 }
 }
 else{
 if(RX_OnesCounter == 6){ // is a flag so mark it as such
 RX_BitCounter = 0;
 RX_NewByte = HDLC_FLAG;
 Flags.NEWFRAMERDY = TRUE;
 Flags.NEWBYTERDY = TRUE;
 } // else is a stuffed bit so ignore this zero
 RX_OnesCounter = 0;
 }
 }
 }
 else{ // here if carrier goes away
 Flags.NEWBYTERDY = TRUE; // reset receiver variables
 Flags.NEWFLAGRDY = TRUE;
 RX_BitCounter = 0;
 RX_OnesCounter = 0;
 RX_ByteRegister = 0;
 }
}

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 16

KS12HIN.ASM Module

This module takes the data bytes received by the KS12AIN module and separates them
into valid data packets and places the packet into a data queue “KSout_Que”. The
code waits for a the first HDLC flag byte to be received signaling the beginning of a new
packet. Further flags are ignored until the first data byte is received. Data bytes are
then placed in the output queue until another flag byte is received marking the end of
the packet, or carrier detect is lost. The data is validated by checking the CRC of the
packet and if good, the assembled data packet is marked as valid for conversion and
transmission out the KISS UART port.

Since data is in the form of 8 bit bytes and the data queues are 16 bit words, the upper
byte of the word can be used to mark the data positions within the data queue as ready
or not ready. This is useful because one doesn’t know until all the data bytes are
received whether or not the packet is good because the CRC check is done after all the
bytes are received.
 Initial state of
 KSout_Que[]

 | : |

 KSout_Start---> | 0 : 0 |
 KSout_Head --------------------
 | x : x |

 | x : x |

 | x : x |

 | : |

. .
 While entering data
 KSout_Que[]

 | : |

 KSout_Start---> | 0 : 0 | start of packet

 | 1 : D0 | 1st data byte

 | 1 : D1 | 2nd data byte

 KSout_Head----> | 1 : D2 | 3rd data byte

 | : | location for next data byte

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 17

. .
 when packet is complete
 KSout_Que[]

 | : |

 KSout_Start---> | 2 : 0 | start of packet

 | 1 : D0 | 1st data byte

 | 1 : D1 | 2nd data byte

 KSout_Head----> | 0 : 0 | crclsb used to be here

 | 1 : crcmsb | crcmsb

CALCULATING FRAME CHECK BYTES

The last two bytes in every frame(packet) of data consist of a 16 bit crc(cyclic
redundancy code) to be able to check the integrity of the packet. It is calculated on all
the bytes in the Frame excluding the flag bytes. The calculation is based on ISO 3309
recommendation using a generator polynomial(divisor) of x x x16 12 5 1+ + + . The 16 bit
crc is sent most significant bit first.

 FRAME(packet) STRUCTURE

| flag | flag | byte1 | byte2 |.....| byte N | crch | crcl | flag |

 16 bit crc---^------^

When receiving a packet, the crc is calculated on the incoming data bytes as they come
in. When the ending flag byte is received, the calculated crc from all the incoming data
bytes(including the incoming crc) should equal 0xF0B8. If it doesn’t then the frame
should be discarded since it has one or more data errors.

The derivation of the generation of crc’s is beyond the scope of this text but an
algorithm using a table look-up method is described. It uses a pre-calculated 256
WORD look up table. The following code generates the 256 word crc lookup table:

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 18

//============== CRC table generating code =================
//This program will generate the 256 word table for use in calculating
//crc’s
//
const int MagicNums[8] = {
 0x1189, 0x2312, 0x4624, 0x8C48, 0x1081, 0x2102, 0x4204, 0x8408 };

void main()
{
int i,j;
unsigned short value;
 printf("CRC_TABLE: ;CRC generation table\n");
 for(i=0; i < 256 ; i++){
 value = 0;
 for(j = 0; j<8; j++)
 if(i & (1<<j))
 value ^= MagicNums[j];
 printf(" .word 0%4.4Xh ;%u\n",value, value);
 }
 exit(0);
}
//============== CRC table generating code output=================
CRC_TABLE: ;CRC generation table
 .word 00000h ;0
 .word 01189h ;4489
 .word 02312h ;8978
 .word 0329Bh ;12955
 .word 04624h ;17956
 .word 057ADh ;22445

...

...

...

 .word 02C6Ah ;11370
 .word 01EF1h ;7921
 .word 00F78h ;3960

The following routine is used to calculate the 16 bit crc.

//============== CRC generating code =================
// To use, first initialize crc to -1 (0xFFFF). Then call the
// routine Calc_crc(x) for every new data byte ’x’.
// When finished, the new crc value is in ’crc’.

int crc, crc_Temp;
void Calc_crc(unsigned char newbyte)
{
 crc_Temp = newbyte ^ crc & 0xFF;
 crc >>= 8;
 crc &= 0x00FF;
 crc ^= CRC_TABLE[crc_Temp];
}

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 19

KS12KOUT.ASM Module

This module waits until a completed packet of data is received in the Ksout_Que and
then sends it out the UART port using the KISS protocol format. About the only exciting
thing this module does is implement a state machine that helps in creating the proper
FEND frame separators and also the escape sequences needed in the protocol.

Send
Buffer

ESC
FEND

ESC
FESC

FEND FESC

DATA

KS12KIN.ASM Module

This module waits for a KISS format data byte to be received by the UART and places it
in the circular buffer "KSin_Que" if it is KISS data or decodes the KISS command. The
incoming data packet is placed in the KSIn_Que which is configured similarly to the
queue KSOut_Que in that the upper 8 bits of each data word contain information on
whether the data is complete and also separates multiple data packets.

. .
 Initial state
 KSin_Que[]

 | : |

 KSin_Start---> | 0 : 0 | start of data packet
 KSin_Head --------------------
 | x : x |

 | x : x |

 | x : x |

 | : |

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 20

. .
 Before a packet is complete
 KSin_Que[]

 | : |

 KSin_Start---> | 0 : 0 | start of data packet

 | 1 : D0 | 1st data byte

 KSin_Head---> | 1 : D1 | 2nd data byte

 | x : x | location for next data byte

 | : |

. .
 When a packet is complete
 KSin_Que[]

 | : |

 KSin_Start---> | 2 : 0 | start of data packet

 | 1 : D0 | 1st data byte

 | 1 : D1 | 2nd data byte

 | 1 : crch | 3rd byte

 | 1 : crcl | 4th and last byte

 KSin_Head---> | 0 : 0 | End of packet

..

After a KISS data packet is received a CRC word is generated and placed at the end of
the data. A duplicate of the receive crc calculation routine is used in order to allow
duplex operation where incoming and outgoing packets require crc calculations. The
same look up table is used for both.

KISS commands which are identified by a non zero byte following the FEND byte are
decoded and the various parameters are stored in RAM variables for use by the
system. The KISS parameters are described in detail in the KISS specification. The
only unique parameter not specified by the KISS specification is the Hardware
parameter byte. For this modem it is used to allow the user to change receiver gain
settings and also choose radio port 1 or 2 using the KISS connection without re-
assembling the code. The following table describes the allowable values for the
Hardware parameter byte:

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 21

Bit 7 selects radio port1 or 2. (default is port1, Bit7=0) Bits 5-0 select the Receive gain.
param DEC param HEX Radio Port Receiver Gain

0 00h 1 Gain = 1
8 08h 1 Gain = 2
16 10h 1 Gain = 4
24 18h 1 Gain = 8
32 20h 1 Gain = 16
40 28h 1 Gain = 32
48 30h 1 Gain = 64
128 80h 2 Gain = 1
136 88h 2 Gain = 2
144 90h 2 Gain = 4
152 98h 2 Gain = 8
160 A0h 2 Gain = 16
168 A8h 2 Gain = 32
176 B0h 2 Gain = 64

Default settings are Radio Port1 with a GAIN=4.

TOP
LEVEL

Get
TXDelay

Get
Persistence

Get
Slotime

Get
TXTail

Get
Duplex

Get
Hardware

Data
Level

ESC
Level

FEND

FESC

FEND

KS12KIN.ASM State Machine

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 22

KS12HOUT.ASM Module
This module waits for a complete data packet to be placed into the KSIn_Que and then
begins the process of transmitting the packet. If the Duplex mode is activated, the
transmitter is keyed and a string of flag bytes is sent to the KS12AOUT.ASM module for
conversion into the proper tone sequences. After a time delay of .01*TXDelay seconds,
the packet data is removed from the KSIn_Que one byte at a time and sent to the
module KS12AOUT.ASM. After the data is sent, flag bytes are sent for .01*TXTail
seconds and then the transmitter is unkeyed.

If the half duplex mode is selected, the above sequence is followed except that the
transmitter is not keyed until Carrier detect is inactive. Whenever data is ready for
transmission, the process begins monitoring the carrier detect bit. It waits indefinitely
for this signal to go inactive. When the channel clears, a random number between 0
and 255 is generated. If this number is less than or equal to the parameter
“Persistence”, the transmitter is keyed on and the process waits .01*TXDelay seconds,
then transmits all queued frames. After the data is sent, flag bytes are sent for
.01*TXTail seconds and then the transmitter is unkeyed. If the random number is
greater than Persistence, the process delays .01*SlotTime seconds and repeats the
procedure beginning with the sampling of the carrier detect bit. (If the carrier detect
signal has gone active in the meantime, the process again waits for it to clear before
continuing). Note that Persistence = 255 means ``transmit as soon as the channel
clears''.

The Persistence and SlotTime parameters are used to implement p-persistent CSMA.(
Carrier Sense Multiple Access) This method can reduce the chance of collisions on an
active channel. If several stations are waiting for the channel to clear, it is quite likely
more than one will begin transmitting at the same time and interfere. By having each
station wait a random period of time before transmitting, the likelihood of collisions is
reduced.

Wait
In

Packet

Wait
TXDealy

Wait
No

Carrier

Send
HDLC
Data

Wait
TX
Tail

Wait
Slotime

Full Duplex Half Duplex

Carrier=TRUE

P<=Rand()

P>Rand()

Carrier = FALSE

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 23

KS12AOUT.ASM Module
This module takes bytes of data to be transmitted, serializes them, encodes the serial
data in NRZI format, performs bitstuffing, clocks out the data at 1200BPS rate, and
generates the proper D/A samples to create AFSK tones.

A 1200 BPS transmit clock is generated using a phase accumulator word that is
incremented by INC1200 every sample time. A 16 bit phase accumulator
(Xmit_Phz_Acc) is used to generate the sample clock. The phase increment value is
chosen so that the word rolls over at a 1200 bps rate. The increment value (INC1200)
that must be added every sample time is:

INC
Fout

Fs
1200

2 1200 2
10893

16 16

= =() ()
 = 7220

The routine BitTransmit() is called every time Xmit_Phz_Acc rolls over. This routine
creates flag byte sequences and serializes the data bytes that are to be sent using
bitstuffing and NRZI encoding. The final output bit value then is used to select which
tone frequency to transmit. The “C” code is shown below:
void BitTransmit()
{
 if(Flags.TRANSMITON){
 if((TX_ByteRegister & 1) == 1){
 TX_OnesCounter++;
 if(TX_OnesCounter != 5){
 if(TX_OnesCounter > 5){ // see if need to ZERO insert
 TX_OnesCounter = 0;
 Flags.TXLASTBIT = ~Flags.TXLASTBIT;
 Flags.TXPRESENTBIT = Flags.TXLASTBIT;
 }
 nextbit();
 }
 }
 else{ // if data bit is a ZERO
 Flags.TXLASTBIT = ~Flags.TXLASTBIT;
 Flags.TXPRESENTBIT = Flags.TXLASTBIT;
 if(Flags.FLAGING){ // allow 6 ONE bits to be sent
 TX_OnesCounter = -5;
 Flags.FLAGING = FALSE;
 }
 else
 TX_OnesCounter = 0;
 }
 nextbit();
 }
 if(Flags.PRESENTBIT)
 PhaseInc = INCH; // set 2200 Hz tone
 else
 PhaseInc = INCL; // set 1200 Hz tone
 }
 else
 PhaseInc = 0; // turn off tone
}

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 24

void nextbit()
{
 TX_ByteRegister >>= 1;
 if(++TX_BitCounter >= BITSINBYTE){
 TX_BitCounter = 0;
 if(Flags.SENDFLAG)
 Flags.FLAGING = TRUE;
 Flags.SENDFLAG = FALSE;
 TX_ByteRegister = TX_NewByte;
 Flags.NEXTBYTE = TRUE; //signal ok to load next byte
 }
}

The output tones are created with yet another phase accumulator “PhaseAcc” that is
incremented by the contents of a variable “PhaseInc” at the sample rate of the D/A.
The upper 7 bits of the Phase Accumulator are used to index into a SIN lookup table to
generate the output tones. By selecting one of two possible phase increment
values(INCL,INCH), the two tone frequencies(1200,2200) required for transmission can
be generated. When the transmitter is off, the increment value is set to zero so no tone
is generated.

Phase_Acc+

INCH

INCL

SELECT

SIN
LOOKUP
TABLE

D/A
Converter

Input
DATA

Bit15-9

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 25

MODEM TEST METHOD

Several methods were employed in debugging and verifying the modem design. The
primary measurement tool was an oscilloscope. For measuring timing, digital outputs
were used such as LED ports or TNC port bits. For measuring signal data, the D/A
channel of the DSP-93 was used to output various test points. Test programs were
written that run on a PC to send and receive data over the UART link. Final system
tests and tweaking were done with the following setup:

PC
Development

System

PC Software
Generating
Test Data
Packets

AMD
7910

Modem
Chip

Attenuation

TI C5x DSK
Gausian Noise

Adder

DSP-93
KS12

Modem
Scope

An old AMD 7910 modem chip was used to generate AFSK signals. These signals
were variably attenuated and then mixed with pseudo gausian noise generated by a
Texas Instruments C5x DSK board and some software. This setup was used to tweak
the data clock phase lock loop, the carrier detector, and data “Eye” patterns.

The final tests were on the air tests, connecting to various local nodes.

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 26

MODEM PERFORMANCE

The data handling modes of the modem all seemed to work as planned. Not a whole
lot of data was transferred using the full duplex mode except in loop back tests. The
processor load was roughly measured by measuring the peak and average time it took
to service all seven software modules in the main code loop. The minimum time
around the loop was 17 uSec. Peak processing time around the loop while performing
full duplex loopback testing, was around 55 uSec. This means the Sample_Que
probably never gets even one sample behind. The average time around the loop was
about 35 uSec. This means the processor is running about 38% of a full load at the
present sample period of 91.8uSec. Code size takes about 2.3K of program space.

Areas for Improvement:

• The modem is not very sensitive. The carrier detect is more sensitive than the data
recovery. (This is not all bad since it prevents some channel interference by
keeping the transmitter off when carrier is detected.) The phase delay discriminator
is probably not the ideal detection method. Also the clock recovery uses data edges
as a reference which is not the ideal. A better way would probably be to mix the
incoming signal to baseband and integrate and dump all the I and Q signals for one
bit time. Clock recovery could use early-late integrators dumped at half bit times to
generate a clock error signal.

• The Carrier detect seems to lock on to certain noise bursts. Two different receivers
were tested and they both exhibited the same phenomena. Maybe some mix of
RSSI and clock presence could be used to qualify the signal.

• Perhaps some form of AGC could be implemented to give a wider dynamic range on
the input without the need for tweaking the DSP-93 pots.

• There is no watchdog timer in the DSP-93 to prevent a stuck PTT signal which could
occur if the program got lost due to power fluctuations, RF interference, code
instabilities [quite likely :>)] or other random occurrences in the universe. It has not
happened during testing, but one should be careful with long unattended operation.

Ideas for the Future:

• Since only 38% of the processor is used, perhaps a PSK or higher speed modem
could be added to the basic structure. There is plenty of code space left so other
modems could be selected using the KISS Hardware parameter byte.

• Perhaps someone could implement full featured TNC functionality. This probably

doesn’t make a lot of sense given the amount of assembly code involved. Perhaps
if a cheap “C” compiler becomes available…

KS12 Modem Technical Description

Moe Wheatley, AE4JY , Dec. 1996 27

References

• Frank H. Perkins, Jr. “Experimental 1200bps AFSK modem” DSP-93 code

• David L. Mills, “FSK modem/TNC for HF RTTY and SITOR”

• Mike Chepponis K3MC, Phil Karn, KA9Q “The KISS TNC: A simple Host-to-TNC

communications protocol”

• ARRL, “AX.25 Amateur Packet-Radio Link_Layer Protocol” Ver.2.0

• Marvin E. Frerking, “Digital Signal Processing in Communication Systems”

• Lavell Jordan. “Simplified Digital Signal Processing”

• IBM, “IBM Synchronous Data Link Control General Information”

• Texas Instruments, “TMS320C2x Users Guide”

• Texas Instruments, “Digital Signal Processing Applications with the TMS320 Family
Theory, Algorithms, and Implementations” Vol. 2

