## Coming Summer 1996!

334 pages — over 250 illustrations!



# Wireless Digital Communications: **Design and Theory** Tom McDermott, N5EG FREE disk included Published by: **Tucson Amateur Packet Radio Corporation**

### Preface

Amateur radio communication has progressed in many ways since its beginning in the early 1900's. General communications progressing from spark to CW and voice from AM to FM and SSB. Similarly, data communications as a mode of amateur communications has progressed from using on-off keying (OOK) to FSK, and from RTTY to more modern modes of communications (synchronous and error-correcting). There has been a lack of good technical background material in amateur radio literature on the principles and design of synchronous digital modems.

The wealth and quality of literature in the professional world in the subject area is astounding, but much of it may not be readily accessible to the radio amateur, whether for reasons of advanced mathematics, or simple lack of availability.

In writing this book, the aim has been to bring a concise group of topics covering a broad spectrum of amateur synchronous digital communications subjects to print in one place, and to make it readily accessible to the radio amateur. This text aims to present the information in a clear and straight-forward manner, with the maximum use of graphical and computer-assisted aids, and with a minimum of rigorous mathematical theory. However, digital communications deals with the application and solution of statistical phenomenon, and a minimum background is necessary. Where practical, the appendices provide short summaries of some of the important mathematical concepts that will be needed in understanding certain areas.

Overall, the field of digital communications could be generally broken into two categories: bandwidth-limited communications and power-limited communications. Much of the professional literature focuses on the former, while in practice the amateur is many times concerned with the latter. This text focuses more on the subject of power-limited communications and emphasizes, through examples, the circuits and problems of the latter category of applications.

With time and the increasingly more crowded HF bands, however, the radio amateur will adopt more sophisticated data modems, offering higher throughput and narrower bandwidth operation under the demanding propagation conditions of the HF medium. This trend has already started and should accelerate as the cost of technology, particularly Digital Signal Processing, continues to decrease. So, this text includes information on the subject areas of DSP-based modern filters, and on forwarderror-correcting codes, whose use by the radio amateur will become dominant within a few short years. While the data rate of VHF and UHF communications will increase, it is expected that, for the radio amateur, these will remain power-limited applications for some time.

In the preparation of this text, I have relied on the study of a number of exceptionally well written textbooks, and to the IEEE literature in the area, and these should be consulted whenever more depth or broader interest is desired. I would like to thank the reviewers of the text for many helpful comments, related both to the readability of the material, ... (more in the book!)

#### Chapter 1 – Introduction 1 2 3 4 5 7 9 11 Definition of Information Source Entropy Fundamental Data Capacity Signal to Noise ratio - Eb/No Block Diagram of the Communication System Review / Definition of Some Key Concepts Eye Pattern 12 Signal Constellation Diagram 14 Chapter 1 - References Chapter 2 – Additive White Gaussian Noise (AWGN) 15 15 17 Definition of AWGN Noise Gaussian Distribution Calculating the BER given AWGN 19 22 23 25 26 Generating a BER Curve Relation of Power Spectrum and AWGN Computing Noise and Signal Magnitudes Chapter 2 - References Chapter 3 – Antipodal, Orthogonal, and Non-orthogonal 27 27 29 31 32 Signaling Antipodal Signaling Orthogonal Signaling Non-orthogonal Signaling Analysis of FSK signaling 36 Orthogonal Waveforms Orthogonal FSK Demodulators 37 40 Chapter 3 - References 41 Chapter 4 – Carrier Transmission FSK - Frequency Shift Keying 41 FFSK - Fast Frequency Shift Keying 46 47 mFSK - m-ary FSK PSK - Phase Shift Keying 49 50 mPSK - m-ary Phase Shift Keying 51 53 54 OQPSK - Offset QPSK Received Phase Ambiguity Performance of PSK modulation in the presence of AWGN 58 60 ASK - Amplitude Shift Keying MSK - Minimum Shift Keying OFDM - Orthogonal Frequency Division Multiplexing 63 63 65 67 OFDM based on m-ary FSK OFDM based on ASK AFSK - Audio Frequency Shift Keying Summary 68

70 Chapter 4 - Reference Chapter 5 – Frequency and Impulse Response of Optimum Modem Filters 71 73 Optimum filter criteria 74 77 Raised-Cosine Filter Responses Filter Response Partitioning 83 Filter Impulse Response Filter Response to an Isolated Data Bit 86 Eye Pattern Generation 92

| Equivalent Noise Bandwidth                                 | 96  |
|------------------------------------------------------------|-----|
| Some Frequency Response Defects                            | 97  |
| Impulse-Response Length Truncation                         | 99  |
| Detailed Step-by-Step Procedure                            | 106 |
| Dolph-Chebychev Transmit Pulses                            | 109 |
| Chapter 5 - Řeference                                      | 112 |
| Chapter 6 – Matched Filters                                | 113 |
| Matched filter for Rectangular Pulses                      | 115 |
| Matched filter for Square-Root Raised-Cosine Transmit Puls | es  |
| Use of the Matched Filter Symmetry to Equalize a Channel   | 118 |
| Chapter 6 - Reference                                      | 120 |
| Chapter 7 – Data Codes                                     | 121 |
| Dasic Data Coues                                           | 121 |

| Basic Data Codes                       | 121 |
|----------------------------------------|-----|
| DC-Balance (One's Density) of the Code | 124 |
| Scrambling                             | 124 |
| Forward Error Correcting (FEC) Codes   | 126 |
| Linear Block Codes                     | 127 |
| AWGN Performance of Linear Block Codes | 133 |
|                                        |     |

| Statistical Derformance of Lincor Dlack Codes         | 12  |
|-------------------------------------------------------|-----|
| Other Properties of EEC Codes                         | 134 |
| Interleaving the Codewords                            | 130 |
| Golav Codes                                           | 130 |
| Longer Codes                                          | 14  |
| Reed-Solomon Codes                                    | 140 |
| Convolutional Codes                                   | 141 |
| Decoding the Convolutional Code                       | 145 |
| Convolutional Decoders                                | 146 |
| Viterbi's Algorithm                                   | 152 |
| Summary of Viterbi Decoder                            | 158 |
| Chapter 7 - Reference                                 | 159 |
| Chapter 8 – Data Slicer and the Slicing Level         | 161 |
| Slicing Level Determination                           | 162 |
| Source Statistics                                     | 163 |
| Non-Scrambled Data                                    | 163 |
| NRZI-Coded HDLC Calculations                          | 165 |
| Scrambled Data Calculations                           | 168 |
| Binomial Distribution                                 | 160 |
| Fixed Slicing-Level Methods                           | 17/ |
| DSP-Based Sheing-Level Determination                  | 1/4 |
| Chapter 9 – Clock Recovery                            | 175 |
| The Importance of Accurate Clock Position             | 175 |
| Methods to Recover the Clock                          | 178 |
| Closed-Loop Clock Recovery                            | 181 |
| Clock Recovery Filters                                | 18: |
| Filter Transfer Function                              | 184 |
| Chapter 9 Deference                                   | 182 |
| Chapter 9 - Reference                                 | 100 |
| Chapter 10 – Carrier Recovery                         | 187 |
| Deriving a Carrier Reference                          | 187 |
| Carrier Generation by Rectification                   | 188 |
| Other Methods of Carrier Concretion                   | 101 |
| 2PSK Carrier Recovery Costas Loop                     | 101 |
| Chapter 10 - Reference                                | 190 |
|                                                       | 172 |
| Chapter 11 – Phase Locked Loops for Carrier and Clock | 103 |
| Closed Loop Posponso                                  | 193 |
| Open Loop Response                                    | 19- |
| Lead Lag Filter                                       | 198 |
| Higher Order Loop Filter                              | 200 |
| Parasitic Poles                                       | 202 |
| PLL Loop Lock time                                    | 202 |
| PLL Noise Bandwidth                                   | 203 |
| Types of Phase Detectors, Lock-in Range               | 203 |
| Control Loop Dynamic Range                            | 204 |
| Chapter 11 - Keference                                | 205 |
| Chapter 12 – Frame Alignment and Data Carrier Detect  | 207 |
| General Data Carrier Detect (DCD) Acquisition         | 208 |

| Chapter 12 – Frame Angliment and Data Carrier Detect |
|------------------------------------------------------|
| General Data Carrier Detect (DCD) Acquisition        |
| DCD and Frame Alignment based on Message Content     |
| Median Time to False Frame Declaration               |
| Maximum Average Reframe Time                         |
| Going Out of Frame                                   |
| Other Message Content                                |
| Framing on Short Transmissions                       |
| Chapter 12 - Reference                               |
|                                                      |
| Chapter 13 – Propagation Channel Models              |
| VHF and UHF Channel Models                           |

| Minimum-Phase and Non-Minimum-Phase Fades         |
|---------------------------------------------------|
| Rayleigh fading                                   |
| Circular Polarization                             |
| Wideband Data Channels                            |
| Rules of Thumb                                    |
| HF Channel models                                 |
| Signaling Rate Bounds                             |
| HF Channel Simulation                             |
| Coefficient Properties                            |
| Bit Error Rate Performance of Rayleigh Faded Path |
| Diversity Reception                               |
| Approaches to HF Modem Design                     |
|                                                   |

| 134                                                                                                                                                                                                                                                                                                 | RTTY - Live With the Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 243                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 136                                                                                                                                                                                                                                                                                                 | AMTOR - Simple Error Detection and Re-transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 244                                                                                                                                                                                                                                                               |
| 136                                                                                                                                                                                                                                                                                                 | AX.25 Packet Transmission - 300 baud HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244                                                                                                                                                                                                                                                               |
| 139                                                                                                                                                                                                                                                                                                 | More Recent Developments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245                                                                                                                                                                                                                                                               |
| 140                                                                                                                                                                                                                                                                                                 | GTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245                                                                                                                                                                                                                                                               |
| 140                                                                                                                                                                                                                                                                                                 | Pactor II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245                                                                                                                                                                                                                                                               |
| 141                                                                                                                                                                                                                                                                                                 | Clover II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 246                                                                                                                                                                                                                                                               |
| 145                                                                                                                                                                                                                                                                                                 | Future Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 247                                                                                                                                                                                                                                                               |
| 146                                                                                                                                                                                                                                                                                                 | Chapter 13 - Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 248                                                                                                                                                                                                                                                               |
| 152                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |
| 158                                                                                                                                                                                                                                                                                                 | Chapter 14 – Automatic Request for Repeat (ARQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 249                                                                                                                                                                                                                                                               |
| 159                                                                                                                                                                                                                                                                                                 | Simple ARQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 249                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | Hybrid ARQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250                                                                                                                                                                                                                                                               |
| 161                                                                                                                                                                                                                                                                                                 | Performance of ARQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                                                                                                                                                                                                                               |
| 162                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |
| 163                                                                                                                                                                                                                                                                                                 | Chapter 15 – Testing Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 255                                                                                                                                                                                                                                                               |
| 163                                                                                                                                                                                                                                                                                                 | Bit Error Rate vs. Received Signal Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255                                                                                                                                                                                                                                                               |
| 165                                                                                                                                                                                                                                                                                                 | Baseband BER Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 255                                                                                                                                                                                                                                                               |
| 168                                                                                                                                                                                                                                                                                                 | Butterworth Calibration Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 257                                                                                                                                                                                                                                                               |
| 168                                                                                                                                                                                                                                                                                                 | Radio Characterization for Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260                                                                                                                                                                                                                                                               |
| 172                                                                                                                                                                                                                                                                                                 | Radio-based lest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                                               |
| 1/4                                                                                                                                                                                                                                                                                                 | FSK - Transmitter Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 260                                                                                                                                                                                                                                                               |
| 175                                                                                                                                                                                                                                                                                                 | Other Transmitter Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 203                                                                                                                                                                                                                                                               |
| 175                                                                                                                                                                                                                                                                                                 | FSK - Receiver Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 203                                                                                                                                                                                                                                                               |
| 170                                                                                                                                                                                                                                                                                                 | System Characterization<br>The entired Elevis Decentred Strengt Level (DSL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                               |
| 1/8                                                                                                                                                                                                                                                                                                 | Decude Level Emer Detection Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 207                                                                                                                                                                                                                                                               |
| 101                                                                                                                                                                                                                                                                                                 | A diverment Aid (Click' how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 207                                                                                                                                                                                                                                                               |
| 103                                                                                                                                                                                                                                                                                                 | Aujustinent Alu - Click DOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 209                                                                                                                                                                                                                                                               |
| 104                                                                                                                                                                                                                                                                                                 | Chapter 15 Deference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 270                                                                                                                                                                                                                                                               |
| 185                                                                                                                                                                                                                                                                                                 | Chapter 15 - Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 212                                                                                                                                                                                                                                                               |
| 100                                                                                                                                                                                                                                                                                                 | Annandiy A Sama Usaful Probability Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 273                                                                                                                                                                                                                                                               |
| 187                                                                                                                                                                                                                                                                                                 | Δ 1. Probability of Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 273                                                                                                                                                                                                                                                               |
| 187                                                                                                                                                                                                                                                                                                 | A 2 Histograms Probability Density Cumulative Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 273                                                                                                                                                                                                                                                               |
| 188                                                                                                                                                                                                                                                                                                 | A 3 Uniform Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 275                                                                                                                                                                                                                                                               |
| 189                                                                                                                                                                                                                                                                                                 | A 4 Binomial Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276                                                                                                                                                                                                                                                               |
| 191                                                                                                                                                                                                                                                                                                 | A 5 Gaussian Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 277                                                                                                                                                                                                                                                               |
| 191                                                                                                                                                                                                                                                                                                 | A 6 Poisson Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 278                                                                                                                                                                                                                                                               |
| 1/1                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |
| 192                                                                                                                                                                                                                                                                                                 | A.7 Rayleigh Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 279                                                                                                                                                                                                                                                               |
| 192                                                                                                                                                                                                                                                                                                 | A.7 Rayleigh Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 279                                                                                                                                                                                                                                                               |
| 192                                                                                                                                                                                                                                                                                                 | A.7 Rayleigh Distribution<br>Appendix B – Pseudo-Random Binary Sequence (PRBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 279                                                                                                                                                                                                                                                               |
| 192<br>193                                                                                                                                                                                                                                                                                          | A.7 Rayleigh Distribution<br>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br>Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 279<br>281                                                                                                                                                                                                                                                        |
| 192<br><b>193</b><br>194                                                                                                                                                                                                                                                                            | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 279<br>279<br>281<br>281                                                                                                                                                                                                                                          |
| 192<br><b>193</b><br>194<br>196                                                                                                                                                                                                                                                                     | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 279<br>279<br>281<br>281<br>282                                                                                                                                                                                                                                   |
| 192<br><b>193</b><br>194<br>196<br>198                                                                                                                                                                                                                                                              | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 279<br>279<br>281<br>281<br>282<br>284                                                                                                                                                                                                                            |
| 192<br>193<br>194<br>196<br>198<br>200                                                                                                                                                                                                                                                              | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 279<br>279<br>281<br>281<br>282<br>284<br>284<br>285                                                                                                                                                                                                              |
| 192<br>193<br>194<br>196<br>198<br>200<br>202                                                                                                                                                                                                                                                       | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286                                                                                                                                                                                                              |
| 192<br>193<br>194<br>196<br>198<br>200<br>202<br>202                                                                                                                                                                                                                                                | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287                                                                                                                                                                                                       |
| 192<br>193<br>194<br>196<br>198<br>200<br>202<br>202<br>202<br>203                                                                                                                                                                                                                                  | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288                                                                                                                                                                                                |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>202<br>202<br>203<br>203                                                                                                                                                                                                                    | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288                                                                                                                                                                                         |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>202<br>203<br>203<br>203<br>204                                                                                                                                                                                                             | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Fourier</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b>                                                                                                                                                                          |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>202<br>203<br>203<br>203<br>204<br>205                                                                                                                                                                                                      | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b>                                                                                                                                                                          |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>202<br>203<br>203<br>203<br>204<br>205                                                                                                                                                                                                      | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>*ier</b><br><b>289</b>                                                                                                                                                                   |
| <ul> <li>192</li> <li>193</li> <li>194</li> <li>196</li> <li>198</li> <li>200</li> <li>202</li> <li>202</li> <li>203</li> <li>204</li> <li>205</li> <li>207</li> </ul>                                                                                                                              | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>rier</b><br><b>289</b><br>289                                                                                                                                                            |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208                                                                                                                                                                               | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>289<br>290                                                                                                                                                     |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212                                                                                                                                                                   | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>289<br>290<br>292                                                                                                                                                     |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214                                                                                                                                                       | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>tier</b><br><b>289</b><br>289<br>290<br>292<br>294                                                                                                                                       |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215                                                                                                                                           | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> </ul> Appendix C – Discrete Fourier and Inverse Discrete Four Transforms <ul> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294                                                                                                                                       |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216                                                                                                                               | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> </ul> Appendix C – Discrete Fourier and Inverse Discrete Four Transforms <ul> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>294<br>296                                                                                                                         |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218                                                                                                                   | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297                                                                                                                         |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         218                                                                                                       | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix B - Reference</li> </ul> Appendix C – Discrete Fourier and Inverse Discrete Four Transforms <ul> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>294<br>296<br>297<br>298                                                                                                           |
| 192         193         194         196         198         200         202         203         204         205         207         208         212         214         215         216         218         220                                                                                     | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>tier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298                                                                                                                  |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>203<br>203<br>204<br>205<br><b>207</b><br>208<br>212<br>214<br>215<br>216<br>218<br>218<br>220                                                                                                                                              | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>ter</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-</b>                                                                                                     |
| 192         193         194         196         198         200         202         203         204         205         207         208         212         214         215         216         218         220         221                                                                         | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>ter</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-299</b><br>299                                                                                           |
| 192         193         194         196         198         200         202         203         204         205         207         208         212         214         215         216         218         220         221         221         221                                                 | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-299</b><br>299                                                                                   |
| 192         193         194         196         198         200         202         203         204         205         207         208         212         214         215         216         218         220         221         222         223                                                 | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters D.1 Convolution and Multiplication D.2 Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-299</b><br>300                                                                                   |
| 192<br><b>193</b><br>194<br>196<br>198<br>200<br>202<br>203<br>203<br>204<br>205<br><b>207</b><br>208<br>212<br>214<br>215<br>216<br>218<br>220<br><b>221</b><br>221<br>221<br>225<br>229<br>222<br>229<br>222<br>229<br>220<br>220<br>220                                                          | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters D.1 Convolution and Multiplication D.2 Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-299</b><br>300<br>304                                                                            |
| 192         193         194         196         198         200         202         203         204         205         207         208         214         215         216         218         220         233         224         215         216         218         220         233         234 | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters <ul> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>:iea</b><br><b>299</b><br>299<br>299<br>292<br>294<br>294<br>295<br>299<br>299<br>299<br>300<br>304<br>307 |
| 192         193         194         196         198         200         202         203         204         205         207         208         212         214         215         216         218         220         233         234                                                             | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response<br/>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters D.1 Convolution and Multiplication D.2 Convolution D.3 Frequency and Impulse Response D.4 Correlation D.5 Cross Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308                                                          |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         234         235                                                       | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix D – Correlation, Convolution, and Laplace Not<br/>tion for Filters</li> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> <li>D.5 Cross Correlation</li> <li>D.6 Autocorrelation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>279</b><br><b>281</b><br>281<br>282<br>284<br>285<br>286<br>287<br>288<br><b>:ier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310                                                   |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         234         235         227                                           | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters D.1 Convolution and Multiplication D.2 Convolution D.3 Frequency and Impulse Response D.4 Correlation D.5 Cross Correlation D.6 Autocorrelation D.7 Complex Signals D.8 Longeneous Mutation D.9 Longeneous Mutation D.9 Longeneous Response D.9 Correlation D.9 Constant Response D.9 Constant Response D.9 Constant Response D.9 Constant Response D.9 Longeneous Response D.9 Constant Response D.9 Longeneous Response D.9 Longeneous Response D.9 Constant Response D.9 Longeneous Response D.9 Constant Response D.9 Longeneous Response D.9 Constant Response D.9 Co | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>314                                            |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         235         237         237                                           | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C - Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters <ul> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> <li>D.5 Cross Correlation</li> <li>D.6 Autocorrelation</li> <li>D.7 Complex Signals</li> <li>D.8 Laplace Notation for Complex numbers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>312<br>314                                            |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         235         237         230                                           | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C – Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters <ul> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>Acorrelation</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> <li>D.5 Cross Correlation</li> <li>D.6 Autocorrelation</li> <li>D.7 Complex Signals</li> <li>D.8 Laplace Notation for Complex numbers</li> <li>Appendix D – Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>312<br>314<br>318                                     |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         235         237         237         239         240                   | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix D – Correlation, Convolution, and Laplace Not<br/>tion for Filters</li> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> <li>D.5 Cross Correlation</li> <li>D.6 Autocorrelation</li> <li>D.7 Complex Signals</li> <li>D.8 Laplace Notation for Complex numbers</li> <li>Appendix D – Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>312<br>314<br>318<br><b>310</b>                       |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         216         218         220         233         234         235         237         239         240         241                   | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix D – Correlation, Convolution, and Laplace Not<br/>tion for Filters</li> <li>D.1 Convolution and Multiplication</li> <li>D.2 Convolution</li> <li>D.3 Frequency and Impulse Response</li> <li>D.4 Correlation</li> <li>D.5 Cross Correlation</li> <li>D.6 Autocorrelation</li> <li>D.7 Complex Signals</li> <li>D.8 Laplace Notation for Complex numbers</li> <li>Appendix D – Reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>312<br>314<br>319<br><b>325</b>                       |
| 192 <b>193</b> 194         196         198         200         202         203         204         205 <b>207</b> 208         212         214         215         218         220         233         234         235         237         239         240         241         243                   | <ul> <li>A.7 Rayleigh Distribution</li> <li>Appendix B – Pseudo-Random Binary Sequence (PRBS)<br/>Generators</li> <li>B.1 Properties of a PRBS</li> <li>B.2 Construction of the PRBS Generator.</li> <li>B.3 Autocorrelation Properties</li> <li>B.4 Self Synchronization</li> <li>B.5 Self Synchronous Scrambler and Descrambler</li> <li>B.6 Binary Polynomial Arithmetic</li> <li>Appendix C – Discrete Fourier and Inverse Discrete Four<br/>Transforms</li> <li>&amp; Complex Numbers</li> <li>C.1 The Fourier Transform and the Impulse Response</li> <li>C.2 Complex Number Representation</li> <li>C.3 Description of a Signal using Complex Notation</li> <li>C.4 Complex Conjugate</li> <li>C.5 Discrete Fourier Transform</li> <li>C.6 Power Spectral Density (PSD)</li> <li>C.7 Symmetry Requirement for Frequency Response</li> <li>Appendix C – Reference</li> </ul> Appendix D – Correlation, Convolution, and Laplace Not<br>tion for Filters D.1 Convolution and Multiplication D.2 Convolution D.3 Frequency and Impulse Response D.4 Correlation D.5 Cross Correlation D.7 Complex Signals D.8 Laplace Notation for Complex numbers Appendix D – Reference TAPR Information Index Sumplied Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>279</b><br><b>281</b><br>282<br>284<br>285<br>286<br>287<br>288<br><b>cier</b><br><b>289</b><br>290<br>292<br>294<br>296<br>297<br>298<br><b>ta-</b><br><b>299</b><br>300<br>304<br>307<br>308<br>310<br>312<br>314<br>319<br><b>325</b><br><b>333</b>         |

## Contact TAPR to reserve your copy!

## Learn the basics and more complex concepts of digital wireless communications — from an expert !

Is this book for you? This book brings a concise group of topics covering a broad spectrum of synchronous wireless digital communications subjects to print in one place – readily accessible. The book is written in a clear and straight-forward manner, with a maximum use of graphical and computer assisted aids, and with a minimum of rigorous mathematical theory. This book includes information on subject areas covering DSP-based modem filters, forward-error-correcting codes, carrier transmission types, data codes, data slicers, clock recovery, matched filters, carrier recovery, propagation channel models, and much more!

If you are interested or are actively doing wireless digital communications, this book is a must for your reference library. Published and endorsed by TAPR, the inventors of the TNC-II. Save hours of time and endless frustration while understanding the concepts of wireless digital communications!

Finally, a book with everything you need to know about digital wireless communications, explained in easy-to-understand English!

**FREE disk included** — contains the files and programs used to generate the various charts found in the book! (3.5" PC format)

Wireless Digital Communications: Design and Theory makes extensive uses of graphs and charts to illustrate various concepts. With **over 250** such illustrations, understanding the topics covered in this book are made much easier!









Publication #96-1