
50

ESP32 Packet/APRS
Creating a Low Cost Tracker

Written By:
Jason Rausch K4APR

Remí Bilodeau VE2YAG

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

51

Introduction

Nearly ten years ago, Remí VE2YAG and I crossed paths via a short YouTube
clip I saw of a handmade APRS display device. I contacted the person who uploaded
the video and told him I would love to work with him to create some kind of product
around the idea. He contacted me back and said that the device was the work of his
friend Remí and gave me an email address to contact him. I emailed Remí and we
quickly became friends around our common love for packet and APRS. Fast forward,
Remí and I have created several APRS related hardware devices. Some have become
formal products that we sold and others have been experiments that either were held
internally for our own use or we shelved because we got excited about another idea.

When the ESP32 came around, I was still playing with PIC’s and had dabbled in
Arduino. I should point out, I am by no stretch of the imagination an embedded
programmer. My code is embarrassingly cobbled together from my own badly written
routines that take me forever to write and snippets I find online. Remí, on the other
hand, is a code wizard. I can throw out an idea and he’ll have it written and ready for
testing in no time. Anyways, the ESP32 came around and we immediately saw the
potential to apply it to an amateur radio data application. Since we had previously
focused on APRS, it was only natural that we do the same with the ESP32. This paper
is based on that work, hopefully shows what we have accomplished and what we are
still working on.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

52

Design Goals

We set out to build an APRS modem/tracker with the following design goals:

● Centered around the ESP32’s rich feature set
● Integrated 1200 baud AX.25 modem
● USB Serial Interface (FTDI Preferred)
● KISS Support through USB and Bluetooth
● Integrated GPS Receiver
● Op-Amp Audio Design, Avoid Modem IC
● Operates as an APRS tracker autonomously and with a tethered device
● Small, Lightweight and low cost to produce
● Minimal LED Indication (reduce draw when battery operated)
● Easy audio adjustment
● Web Interface Configuration

Most of these design goals are well within reach and most have already been
implemented. In this paper, I will do my best to point out where we have achieved a
goal, which are yet to be implemented and those that are still being improved.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

53

Choosing a Microprocessor

For years I have been working with PIC microprocessors. They were introduced to me
by my involvement in the HamHUD APRS project and I had no idea there was such a
powerful device available in such a tiny package. These days, there are many DSPic
devices that with some add-on peripherals could do what we needed, but the parts
count starts to really add up. Not to mention, debugging any of the sub-systems. Remi
and I had used the CORTEX LM3S800 in the original YagTracker. Later we moved onto
the LPC1343 and LPC1347 in the ExpressTracker models. While these ARM based
processors all worked well at the time for our applications, they too were lacking
something…wireless connectivity.

Enter the ESP32. It’s truly a marvel of modern microprocessor technology. I’ll spell out
the full specifications in the next section, but the major advantage the ESP32 had over
the other guys was the built in wireless connectivity options. Bluetooth, Bluetooth LE
and WIFI 802.11b/g/n. This opens up the endless possibilities for connecting this
device to other devices. We’re not talking about concentration on internet, as many
APRS users have gone to. We’re talking about connecting to a modern device, while
still using a real radio. Put the radio back into amateur radio.

Not only does the ESP32 have wireless connectivity, but it has a whole host of
interfaces and supported protocols making adding on the hardware we need easy!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

54

ESP32 Hardware Overview

Let’s get right into it and talk about the ESP32 hardware itself. The ESP32 is an
incredible amount of features packed into a tiny package that averages less than $5
each, single quantity. Here are the specifications:

● 32 Bit Microprocessor
● Two CPU Cores
● 80-240 MHz Clock Speed
● Three Hardware UARTs
● 12 Bit ADC, Up to Eighteen Channels
● Two 8 Bit DAC Channels
● I2C, SPI, SD Card Interface, PWM and SDIO
● 22 GPIO Pins
● 32 MB of On-Board SPI Flash
● Built-In Bluetooth and Bluetooth LE
● Built-In WIFI 802.11b/g/n
● +3.3V Operating Voltage
● Can be programmed using Arduino IDE and ESP32 Support Plugin

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

55

ESP32 and FTDI USB Interface

The ESP32 doesn’t require a lot of external components to make it work. It is
somewhat sensitive to power fluctuations and we found good power filtering with large
electrolytic capacitors worked the best to prevent problems. Notably, the 10 uF
capacitor on the EN (Enable) line of the ESP32. The 3V3 line also benefited from 0.1uF
and 22pF capacitors to handle high frequency transient noise on the power rail.

The ESP32 is a bit finicky about how it is programmed. We used an FTDI FT231X
USB-Serial IC that has a full UART, plus hardware handshaking pins. Most notably RTS
and DTR lines needed for the self-resetting circuit. This not only prevents the user from
having to manually reset the tracker after a firmware upload, but performs the
somewhat complicated and time critical line pulsing “dance” it takes to put the ESP32
into a bootload mode for flashing. We started off by using a two discrete transistor
setup for doing this, but found that it didn’t always work and we would have to reset and
start again. In comes the ROHM UMH3NTN single IC with dual NPN transistors and
built in base resistors. By switching to this single part, all of the bootload/flashing issues
were solved.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

56

In this section of the schematic you can see the FTDI FT231X single IC solution to
USB-Serial communications. The FT231X takes care of the USB heavy lifting, leaving
you a TTL serial interface. FTDI drivers are included in just about every major OS now
and you rarely have to actually go download them to get things talking. Just plug n’
play!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

57

Op-Amp Audio Section

When I went to Remi about the idea to build this, he already had a working op-amp
based modem design he was playing with on a couple of other projects. It seemed like
the perfect fit for our new APRS tracker. The part we started off with was a Microchip
MCP6002. With the global shortage, the MCP6002 soon became nearly impossible to
obtain, so we had to look for a replacement. We found the Microchip MCP6402T was
close to the specs of the MCP6002 and a perfect pin-for-pin replacement. The part is a
dual op-amp, reducing down to a single part, with some additional caps and resistors to
form the output low-pass filter on the transmit side and a simple DC blocking circuit on
the receive side.

Two 10K single turn trim potentiometers are used to control the transmit level and limit
overloading to the receive section. IO25_TXA is a direct connection from the ESP32
DAC to the op-amp. MODEM_RXA is a direct connection from the radio port to the
op-amp.

This design along with Remi’s method has yielded a phenomenal decode rate of even
poorly encoded packets. Remi has four individual decoding algorithms operating
simultaneously to potentially catch any scenario and hopefully pull out a CRC-passed
packet. The first two algorithms are correlator methods and the second two are filter
methods. The correlator algorithms can be described as self-multplicative correlator
with a flat and high frequency boost filter. The filter algorithms use a comparison of
sine, cosine/sine of the 1200 Hz and 2200 Hz tones to detect which is which.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

58

We Are Having Some Problems

For the transmit side, we are having problems with the audio being decoded by just
about any hardware I test with. This includes standards like the Kenwood D7/72/710
radios, Kantronics KPC-3, Argent Data Systems Tracker 2 and the NinoTNC. Some
initial tests showed that the waveform might be the issue, having a rough “raspy” sound
to it. Remi was able to tweak a few things in his code to clean this up, but yet decode of
the transmitted packets have not been successful. I should note that Remi has a
hand-built version of this circuit using through hole components and doesn't seem to
have this problem. We can’t nail down if the issue is with hardware, firmware or a
combination of the two.

This o-scope shot shows the audio stepping out of phase. It was determined that the
DAC was inverting some of the waveform, causing this. Some quick changes to the
code fixed the problem.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

59

The fix resulted in this o-scope capture.

This is a comparison scope view of the raw output from the DAC, output of the op-amp
section and just past the low-pass filter before going through the 10K transmit level
potentiometer.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

60

Radio Interface

We employed the Mini DIN interface standard as the interface to the radio. There is
also a four pin header on the PCB, for applications where the Mini DIN might not be
optimal.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

61

On-Board GPS Receiver

When looking for a low-cost, high performance GPS for the tracker, there were several
options. While not cheap, the Trimble Copernicus II was an excellent option and
proven. I also had a lot of experience with this GPS chipset when I put it in my RTrak
all-in-one APRS tracker. It was a great option, but just too expensive. Another popular
option is the UBlox line of receivers. Low cost, decent performance, but sometimes
hard to source.

No, we needed a better option. I decided to fall back to a gem I had found several
years ago, but had mixed results with. The Antenova M10578-A3. At just over $20
USD, it’s an excellent performing chipset, small, 3.3V power capable and perfect for our
needs. The only real configuration is making sure the E2 and E3 lines are at the correct
levels to set the baud rate to 4800 baud. In the future, we could switch up to 9600
baud. A simple change to the solder jumpers on the back of the board and we’re talking
faster!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

62

Configuration

As of the time writing this, configuration is done in one of two ways:

Command Line

Much like a DOS or Linux terminal interface. Simple text commands that return
current values or when accompanied by arguments can commit changes to
settings.

Text Configuration File

Remi has implemented an in-terminal text editor that allows you to create a
complete configuration file that is loaded on power-up/boot. The structure is
much like a DOS batch file with section [xxx] headers and simple x=y settings
under the header.

Example (not complete):

[tnc]
callsign=k4apr
tz=0
verbose=0

[gps]
baud=4800

[kiss]
enable=1
persist=63
slottime=1
txdelay=35
dac_zero=128

Web Configuration

A future option will be the ability to connect to the device via WIFI and using a
web browser navigate to 192.168.10.1 to be presented with a web interface for
configuration of all settings.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

63

What’s Left to Do?

1. We have to get to the bottom of the transmit audio issue. We have been fighting
this for a while. Numerous hardware revisions, hacking up older hardware to try
“simple fixes”. We’re open to any suggestions!

2. Web Interface for configuration. We know that if this is going to be a product that
people buy, they are going to want an easy way to make configuration changes,
especially when in the field/on the go. The web interface is really the only
solution for this.

This is a quick mock-up site written in HTML.

Conclusion

We have made a lot of progress, but there is still work to do. Some might ask “why?”
when APRS seems to be waning. Our argument is, APRS is coming back. We’re
seeing an increase in activity all over the place and we think there is a need for a
product like this.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

