
64

ezDV: Low Cost Digital Voice on the
ESP32

Mooneer Salem, K6AQ (mooneer@gmail.com)
August 2022

Abstract
FreeDV is a series of digital voice modes optimized for use on the HF portion of the radio
spectrum that uses the Codec2 open source voice codec library. Traditionally, this has taken the
form of a desktop application running on a Windows, Mac or Linux PC. However, there are
challenges with this approach, especially for portable operation. This paper will discuss a low
cost approach with high ease of use that eliminates the need for a computer for encoding and
decoding digital voice.

Introduction
Codec2 is a library originally created by David Rowe (VK5DGR)1 in 2009 to provide an open
source, patent unencumbered digital voice codec for use on amateur radio. Since that time, the
library has been extended to also support the various FreeDV modems required to use Codec2
on the air, as well as created a GUI based application2 to enable their use.

While usage has gradually increased, there are several current pain points surrounding initial
configuration as well as more practical concerns with the need for a PC to encode and decode
FreeDV. Unlike with most popular ham radio applications (for example, WSJT-X), FreeDV
requires two sound cards in order to be able to fully use the mode: one for the radio interface
and the other for analog audio input and output. This is on top of the typical digital mode setup
(e.g. adjusting transmit audio to ensure that ALC does not show any indication on the radio) and
is different enough that it has caused confusion for some operators in the past.

In addition, unless one has a laptop that can be carried out into the field for portable use, the
requirement that one runs FreeDV on a PC inherently limits it to stationary, home use. Even if
one owns a laptop and is willing to take it portable, the decision to do so inherently results in
having to rethink one’s power budget and other constraints, which could result in having to make
other changes to the portable station to stay within those constraints. Depending on one’s
priorities during portable operation, this could mean that FreeDV is left at home anyway.

2 “FreeDV: Open Source Amateur Digital Voice.” FreeDV, https://freedv.org/.

1 Rowe, David. “Open Source Low Rate Speech Codec Part 1.” Rowetel, 26 Aug. 2010,
https://www.rowetel.com/?p=128.

65

An alternative to a full-featured laptop is an embedded device that can perform basic FreeDV
modulation and demodulation. One example of such a device is the SM10003. The SM1000
uses an STM32F4 microcontroller and is able to modulate and demodulate three FreeDV
modes: 700D, 700E and 1600. However, due to the ongoing chip shortage, the SM1000 has
been sold out with no ETA for return as of the time of this writing. The relatively high price prior
to it selling out (~US$200) also made it less accessible to hams that could not easily afford to
purchase the device without already being heavy users of FreeDV.

The ESP32 Microcontroller
The ESP32 was originally brought to market by a company called Espressif in 2013 in the form
of the ESP82664. This device was the first product to achieve wide adoption by the maker
community due to its low cost and the inclusion of wireless functionality. Initially, documentation
was solely in Chinese, but English language documentation along with a Software Development
Kit (SDK) and libraries came about in short order. The wide adoption and wireless functionality
made it a natural candidate for an embedded amateur radio device, especially as many newer
radios are coming with network connectivity as a standard (or at least reasonably priced5)
option.

As of this writing, there were a few variants6 of the ESP32 that were found to possibly be
suitable: the original ESP32 and the ESP32-S3. Unfortunately, the -C3 and -S2 variants are not
suitable for FreeDV at this time due to the heavy usage of floating point operations in the library;
previous tests by this author on the RP2040 (from the Raspberry Pi project)--which also has no
floating point unit–resulted in performance significantly slower than real time7. Upon further
investigation, it was found that the -S3 variant also has support for SIMD instructions8 (similar to
SSE on the Intel x86 architecture). There was previous successful experience optimizing
portions of the Codec2 library to take advantage of those instructions on the PC9, so the
ESP32-S3 was ultimately chosen to enable this possibility during development.

9 Salem, Mooneer. “700C: Use Vector Ops for rx_filter_coh() When Possible. by Tmiw · Pull Request
#200 · drowe67/codec2.” GitHub, 24 July 2021, https://github.com/drowe67/codec2/pull/200.

8 ESP32S3 Series - Espressif.
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf.

7 Salem, Mooneer. “Fixed Point/FPGA Implementation of Codec2 · Discussion #223 · drowe67/codec2.”
GitHub, 31 Oct. 2021, https://github.com/drowe67/codec2/discussions/223#discussioncomment-1565289.

6 “Chip Series Comparison.” ESP-IDF Programming Guide,
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/chip-series-comparison.html.

5 “Welcome to Wfview.org.” Wfview, https://wfview.org/.

4 Cording, Stuart. “What Is the ESP32? Its Brief History and How to Get Started.” Elektor, 10 Mar. 2022,
https://www.elektormagazine.com/articles/what-is-the-esp32.

3 Rowe, David. “SM1000.” Rowetel, http://rowetel.com/sm1000.html.

66

Porting to ESP32
The next step after deciding on the ESP32-S3 was to buy a development device to begin testing
the FreeDV codebase. The nanoESP32-S3 was discovered during a search of Tindie10 and
quickly purchased. For futureproofing, the “N8R8” variant with 8MB of PSRAM and flash was
selected.

Upon receipt of the nanoESP32-S3, work was undertaken to attempt to compile the Codec2
library using the ESP-IDF development environment. As the ESP-IDF development environment
natively uses CMake (much like FreeDV and Codec2), integration with a sample project using
the “__EMBEDDED__” compiler definition (which enables various memory and space
optimizations to allow it to fit onto the STM32F4) was straightforward. However, upon initially
attempting to compile the test application, errors related to the CMSIS library11 appeared on the
console.

Investigating further, it was discovered that the usage of CMSIS was limited to a single file
called “ofdm.c” inside the Codec2 library. These references were to complex value and real
valued dot product operations provided by CMSIS (namely arm_dot_prod_f32()12 and
arm_cmplx_dot_prod_f32()13). Fortunately, Espressif’s ESP-DSP library also contained similar
functions for performing dot product operations14 and used the ESP32 SMID instructions when
available. An initial pass at updating the ofdm.c file to use the ESP-DSP functions instead of
CMSIS proved to be successful.

Before submitting the pull request to the Codec2 project, the changes made to use ESP-DSP
were generalized to support architectures other than ARM and ESP32. This was done through
the use of a known wrapper interface that embedded device designers would use to implement
the required dot product operations. The SM1000 code was also updated to implement these
wrapper functions using the CMSIS library. After testing these changes, a pull request was
created in the Codec2 project to merge them into the codebase15.

15 Salem, Mooneer. “Allow Use of __EMBEDDED__ on Non-ARM Systems. by Tmiw · Pull Request #317
· drowe67/codec2.” GitHub, 3 Apr. 2022, https://github.com/drowe67/codec2/pull/317.

14 “Espressif DSP Library API Reference.” Espressif DSP Library v1.2.0-3-g2415e61 Documentation,
https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#dot-product.

13 “Complex Dot Product.” CMSIS-DSP Software Library,
https://www.keil.com/pack/doc/CMSIS_Dev/DSP/html/group__cmplx__dot__prod.html#ga93796e73f0277
1cf6fe13de016e296ed.

12 “Vector Dot Product.” CMSIS-DSP Software Library,
https://www.keil.com/pack/doc/CMSIS_Dev/DSP/html/group__BasicDotProd.html#gadf26f6bc62d641652
8663ad3e46fbf67.

11 “CMSIS.” Arm Developer, Arm Ltd., https://developer.arm.com/tools-and-software/embedded/cmsis.

10 Wu, Johnny. “NanoESP32-S3 Development Board by MuseLab on Tindie.” Tindie,
https://www.tindie.com/products/johnnywu/nanoesp32-s3-development-board/?pt=ac_prod_search.

67

Audio Input and Output
The next step after confirming that the FreeDV codebase was able to compile on the ESP32
was to set up audio I/O. Unfortunately, while the ESP32-S3 does have an analog to digital
converter (ADC), it does not have the functionality to emit an analog signal again. Additionally,
the ADC that did exist on the -S3 had 12 bits of resolution16. It was decided to investigate
additional audio ADC and DAC chips that could be integrated onto the board.

One product that particularly stood out was the TLV320 series audio codec chip by Texas
Instruments. In particular, the AIC3254 variant had two ADC and two DAC channels17, which
made it ideal for processing both the radio audio and the analog headset audio. The chip also
supported various audio routing modes (for example, the left channel of the audio going to the
ESP32 could be configured to be coming from input #1 while the right channel could be
configured as coming from input #2). As FreeDV solely works with mono audio signals and
ignores the second channel, this made it possible to only need one TLV320 on the board to
handle all the audio requirements of the device. Its cost was also fairly low at around $10 each
in small quantities18.

To make sure that the TLV320 would be satisfactory for the device, investigation was done into
purchasing an EVM (also known as a development board) containing the TLV320. However, the
TLV320 EVM was US$250 when purchased directly from Texas Instruments19, a significant cost
for effort that may possibly need to be thrown away. Instead, it was determined that a first pass
at building a development board containing the TLV320 would be done instead.

Building the Development Board
To build the development board, a new KiCad project was created to hold the schematic and PC
board layout. Pin headers were then placed in the schematic to represent the nanoESP32-S3,
followed by the TLV320 and its required passive components as per its datasheet and technical
reference documentation. Two TRRS 3.5mm jacks were also added, one for radio audio and
one for a wired headset. Buttons and LEDs were also added to represent the most common
operations (PTT, volume up/down and selecting FreeDV modes) and system status (PTT on,
network connection, sync and audio overload).

Once these components were routed on the PCB, some thought was taken as to how it would
be assembled once the boards arrived. While this author does have some SMD soldering

19 “TLV320AIC3254EVM-K.” TLV320AIC3254EVM-K Evaluation Board | TI.com, Texas Instruments,
https://www.ti.com/tool/TLV320AIC3254EVM-K#order-start-development.

18 “TLV320AIC3254IRHBT.” JLCPCB,
https://jlcpcb.com/partdetail/TexasInstruments-TLV320AIC3254IRHBT/C182339.

17 “TLV320AIC3254.” TLV320AIC3254 Data Sheet, Product Information and Support | TI.com, Texas
Instruments, https://www.ti.com/product/TLV320AIC3254.

16 “Analog to Digital Converter (ADC).” ESP-IDF Programming Guide,
https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32s3/api-reference/peripherals/adc.html.

68

experience, the experience was lacking for components as small as the TLV320. Thus, it was
decided to take advantage of JLCPCB’s SMD assembly service. This service was reasonably
priced for prototyping (generally part cost plus a fee per part for what they call “extended parts”).
After some time spent in associating parts on the schematic with parts that were in stock at
JLCPCB, the Gerber files were submitted to them and payment was made.

While waiting for the initial boards to arrive, development of the firmware for the ESP32 was
undertaken. This involved a first pass at writing the initialization and audio I/O code (using the
I2C and I2S functions available as part of ESP-IDF) as well as a basic loop for sending audio
through the Codec2 library. The initial effort completed in time for the arrival of the development
boards.

Debugging the Firmware
Unfortunately, it was discovered that one of the pins on the nanoESP32-S3 that was initially
intended for use with the TLV320 was shared by the multi-color LED. As a workaround, the pin
on the board’s pin header was cut and the female side bridged to a neighboring pin. The change
was also reflected in the schematic and PCB for the next revision of the board.

Additionally, the initial pass had significant issues with configuring the TLV320. During
development, it was decided to configure the TLV320 such that it used an 8 KHz sampling rate;
this sample rate is the native sample rate as used in the FreeDV codebase. However, much of
the sample code available for the TLV320 assumed a 48 KHz or 44.1 KHz sample rate, so a
guess as to the data to send over the I2C bus was made. Significant time was spent performing
modification/flash/test cycles trying different commands and command orderings in an attempt
to have working audio, but eventually a series of commands was found that properly configured
the chip for 8 KHz audio.

Because of the way that audio was being fed into the Codec2 library, however, part of one of the
input audio channels did not work properly. Initially this was thought to be a hardware issue for
two reasons: seeing pulsing on the offending channel with an oscilloscope and due to the issue
only affecting one channel and not the other. A second revision of the board was spun that did
the following:

● Avoided use of the GPIO pin that was connected to the multi-color LED on the
nanoESP32-S3,

● Rerouted all traces to the TLV320 to shorten them as much as possible,
● Added additional vias connecting ground planes (especially surrounding the sensitive

audio traces coming from the TLV320) to improve noise immunity,
● Tweaked the values of various components on the schematic/PCB, and
● Added mounting holes for future mounting in an enclosure.

These resulted in the following schematic and PCB design:

69

Fi
gu

re
 1

: T
he

 T
LV

32
0

an
d

su
pp

or
tin

g
co

m
po

ne
nt

s
on

 th
e

ez
D

V
 s

ch
em

at
ic

.

70

Fi
gu

re
 2

: T
he

 L
E

D
s

an
d

ot
he

r e
xt

er
na

l i
nt

er
fa

ce
 c

om
po

ne
nt

s
on

 th
e

ez
D

V
 s

ch
em

at
ic

.

71

Figure 3: The top signal layer of the ezDV PCB including ground pours.

72

Figure 4: The 3.3V power layer of the ezDV PCB.

73

Figure 5: The bottom signal layer of the ezDV PCB.

74

Figure 6: The bottom ground layer of the ezDV PCB.

Upon receiving the new revision boards, it was discovered that performing these changes did
not resolve the audio problem. After further research into the TLV320 technical documentation, it
was discovered that it had a loopback mode that bypassed the firmware entirely. Enabling this
mode demonstrated that audio was being decoded and re-encoded successfully on both
channels, indicating a problem in the firmware. Additional debugging of the firmware then found
the issue causing the audio failures and thus allowed audio input and output on both jacks to
work properly.

75

Building the Enclosure
The next step after producing a basic working prototype of the firmware and hardware was to
build an enclosure to protect it during transport and use. This author purchased a Creality Ender
2 Pro 3D printer to print out prototypes of the enclosure due to its small size (which was good
for storage and use in an apartment) and low cost. After some time learning how to use the
printer for pre-made designs on websites such as Thingiverse, it was time to learn how to create
3D models. OpenSCAD was especially ideal for someone with a software development
background as it allowed designs to be represented in the form of code20.

One challenge was in determining how to produce buttons that stay with the enclosure (that is,
those that don’t easily fall out). Building the enclosure such that the buttons were larger on the
top and bottom and had a narrow area to allow movement seemed like the obvious choice to
enable this to happen (Figures 7 and 8). However, it was difficult to adjust the sizing properly to
allow the buttons to freely move yet not fall out.

20 “OpenSCAD CheatSheet.” OpenSCAD, https://openscad.org/cheatsheet/.

76

Figure 7: The ezDV enclosure buttons viewed from inside the enclosure.

Figure 8: ezDV enclosure buttons viewed from the top of the enclosure.

77

After updating and printing many iterations of the design (to test various measurements for the
buttons), a working version of the ezDV enclosure that allowed the buttons to move up and
down and “click” on the PCB buttons resulted. This enclosure was printed using a transparent
PETG filament (for added strength) and is shown below:

Figure 9: Top view of the 3D printed ezDV enclosure.

78

Lessons Learned and Next Steps
During the initial development of ezDV, a few things were learned:

1. Hardware development is more accessible than it has been, especially with online PCB
assembly houses (such as JLCPCB and PCBWay) that only need a credit card and your
Gerber files to produce small runs of boards. In the past, PCB assembly houses only
worked with developers if they were willing to produce large runs, which would be
problematic if an issue was found in the PCB design after the fact.

2. It’s important to definitively rule out firmware bugs before jumping to hardware related
issues. While having one audio channel with problems was suggestive of a hardware
problem, it wasn’t guaranteed to be one in retrospect, especially if the firmware does
additional processing of the input or output.

3. The Codec2 library (and FreeDV more generally) are well suited for cross platform use
due to the relatively low usage of platform specific code. Even on the PC, audio I/O is
done through third party libraries (such as PortAudio and PulseAudio/pipewire) instead
of being done directly.

There are also some things that would be good to add in future iterations:

1. Removing the dependency on the nanoESP32-S3 by integrating the ESP32-S3 directly
onto the board. Doing so would result in a decrease in board size and cost as well as
enable other functionality to be included in the space that was saved (for example, a
built-in speaker/mic for analog audio or battery charging).

2. Perform testing using the original ESP32. If FreeDV performance is still acceptable on
that part, that would enable use of standard Bluetooth instead of requiring a wired
headset, resulting in only needing power to run the board (if also used with a radio that
supports wireless connectivity such as the Icom IC-705).

3. Enable wireless connectivity. Some basic code to communicate with the IC-705 was
prototyped, but it didn’t have adequate reliability. Part of this effort would be to improve
said reliability as well as possibly lower memory consumption (as it currently requires
use of the PSRAM to run without crashing the ESP32). A Web based configuration
interface could also be created to configure various components in the firmware, such as
Wi-Fi network information and callsign (for PSK Reporter support).

Additional Information and Resources
ezDV is open source and available on GitHub at https://github.com/tmiw/ezDV for those
interested in having their own embedded FreeDV solution. Pull requests are always welcome
there, as well as the main FreeDV projects (https://github.com/drowe67/freedv-gui and
https://github.com/drowe67/codec2).

